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ABSTRACT time and space in a noisy environment. The network consol-
This paper considers an estimation network of many dis- idates data collected from sensor nodes to reconstruct the
tributed sensors with a certain correlation structure. Due to state of nature, e.g., estimating a field variable given the
limited communication resources, the network selects only sensor observations in applications such as environmental
a subset of sensor measurements for estimation as long as monitoring, military surveillance, and space exploration [1.
the resulting fidelity is tolerable. We present a distributed The key issues are the fidelity at which the field variable can

sampling and estimation framework based on innovations be estimated and the cost of operating the sensor network.

diffusion, within which the sensor selection and estimation Because wireless sensor devices are usually battery-powered
' 1 1 ~~~~~~~~~~~andthe replacement is very difficult if not impossible en-are accomplished through local computation and communi- y.rl m i

cations between sensor nodes. In order to achieve energy ergy efficiency is critical for sensor networks and has a direct

efficiency, the proposed algorithm uses a greedy heuristics influence on the system lifetime. For senor networks with a

to select a nearly minimum number of active sensors in or- dense deployment, it is necessary to select a group of sensors

der to ensure the desired fidelity for each estimation period. that are more informative for data fusion and to set other
Extensive simulations illustrate the effectiveness of the pro- nodes inactive (or sleeping) in order to achieve energy effi-
posed sampling scheme. ciency. Although there might not always be a direct relation

between energy efficiency and the number of active sensors,
reducing the number of active sensors generally leads to en-

Categories and Subject Descriptors ergy efficiency. The goal of this paper is to find a nearly
H.4 [Information Systems Applications]: Communica- minimum number of sensor nodes that can achieve the de-
tions Applications; C.2.4 [Communication Networks]: sired estimation fidelity.
Distributed Systems; G.1.3 [Numerical Linear Algebra]: 1.1 Linear Estimation
Linear Systems Signal Processing

Consider a network of N sensor nodes estimating an un-
General Terms known deterministic parameter 0 C Thm. The observation
Algorithm, Theory of each sensor is distorted by a matrix Hi C 7'i Xm and

corrupted by additive noise, i.e.,

Keywords yi = HiO + vi i = 1, 2,...,N (1)
Distributed processing, sampling, estimation, innovations, Equation (1) can be written compactly as y = HO + v,
mean-squared error, sensor networks where Y = COI{Yl,Y2 ,YN}, H = col{Hi,H2,. ,HN},

and v = col{v1,v2,...,VN}. The measurement noise v is
1. INTRODUCTION zero mean and has covariance matrix C. Linear models of

the form (1) are widely used in many sensing applications
A large class of wireless sensor networks (WSNs) are de- du to thi ahmtcltatblt.Freapeh

veloped to estimate an underlying physical phenomenon over . . .
power of an electromagnetic signal decays proportionally to

This work was partially supported by NSF grants ECS- the channel gain. In sensor target tracking problems [2], the
0401188 and ECS-0601266. state variables (such as position and velocity) evolve linearly

with time and motivate a linear model.
At the beginning of each estimation period, the network

selects a subset of the sensor measurements, denoted by
Permission to make digital or hard copies of all or part of this work for An = {il,i2, . in}, for estimation as long as a desired es-
personal or classroom use is granted without fee provided that copies are timation fidelity can be guaranteed. For a given An, we use
not made or distributed for profit or commercial advantage and that copies the notations HSU} col {Hi1 , ...... Hin } and YAn
bear this notice and the full citation on the first page. To copy otherwise, to col{y1 , ...... , Yj<. }- Let C.AN be the partial matrix se-
republish, to post on servers or to redistribute to lists, requires prior specific lected from C with rows and columns corresponding to {ii, i2,
permission and/or a fee.. ..,
IPSN'07, April 25-27, 2007, Cambridge, Massachusetts, USA. ... , in} With the data model in (1), the linear minimum-
Copyright 2007 ACM 978-1-59593-638-7/07/0004 ...... ...........$5.00.variance-unbiased-estimator (m.v.u.e.) [3] of 0 using YA< is
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given by or too costly. A number of distributed solutions have been
-1 proposed for detection, estimation, and inference [14]-[19].

0 (y,n) = (H> C HA,) H> YC_ (2) In this context, each node does not need the global informa-
tion and can perform local computation by communicating

and the resulting minimum mean-squared error (MMSE) is with nearby nodes.

D (A) (HT C-1HA -1 (3) 1.3 Paper Outline
In this paper, we develop a distributed sensor selection

The MMSE of the estimator should be less than or equal to strtg Wepconsider eless sensorntokw tmny
some desired distortion Do, i.e.,strategy. We consider a wireless sensor network with many

some desired distortion D0, i.e., redundant nodes, each of which can observe a physical phe-
DAn = Tr [D (An)] nomenon in the field. For each estimation period, the net-

work chooses a subset of sensor measurements An to achieve
= E 0 -O(YAn ] [6)-0(3(YAn); ) the desired fidelity. We refer to the procedure of selecting

sensor measurements for estimation as sensor sampling. In-
< Do (4) tuitively, if the noise level is low, a small number of sensors

is sufficient to achieve the desired fidelity; however, if the
In this paper, the objective is to develop a method to se- noise condition is severe, more sensors should be activated

lect a subset of the sensors to estimate the unknown param- for accurate estimation. We propose a sampling and estima-
eter 0 in a distributed way. The method will require each tion framework that exploits a strategy called innovations

tain distortion constraint he mu.e. of 0 tunear- diffusion. Innovation refers to the new information that a
sensor measurement contributes to the reduction of the es-

nodes. One major advantage of distributed solutions is that timation error, and diffusion means the process by which
they save the cost of transmitting all data to a fusion cen- the innovation is communicated across the network. Within
ter, and each sensor can operate as a data sink to achieve this framework, the sampling procedure is accomplished in
robustness. a distributed and automated way, and each active sensor

1.2 Related Work locally computes the m.v.u.e. 0 based on the selected mea-

surements. The proposed algorithm activates a nearly min-
The problem of sensor selection has been investigated for imum number of sensors to ensure the desired fidelity Do at

various purposes. A recent work in [4] proposed an infor- the beginning of each estimation period.
mation driven sensor query (IDSQ) algorithm where only This paper is organized as follows. Section 2 describes
a single sensor is active at any given time and it passes its the system model for innovations diffusion sampling in sen-
measurement to the most informative sensor in the network, sor networks. The proposed framework for sampling and
which will be next active node. This work was extended in estimation is presented in section 3. Simulation results il-
[5], which attempts to select the sensor measurement with lustrating the effectiveness of the proposed algorithms are
maximum mutual information. In [6], the authors used a lo- given in section 4. Section 5 concludes the paper with dis-
cal greedy strategy to select the next most informative sen- cussion on future research.
sor node to reduce information entropy for target location.
The problem of selecting sensors to minimize error in esti- 2. SYSTEM MODEL
mating the target position was investigated in [7]. However,
none of these works consider energy efficiency and system Consider a wireless network with N sensor nodes spatially
lifetime [8]. distributed in the field, as depicted in Fig. 1. The network
There are several works addressing the issue of energy effi- wishes to select a group of sensor measurements to estimate

ciency for sensor selection. In [9], a power scheduling scheme the unknown parameter 0 in a distributed manner by relying
was proposed to minimize the total transmit power while on local computation and inter-sensor communication.
satisfying a given estimation requirement. The effect of fad-
ing channels on estimation errors with power constraints 2.1 Network Graph
was studied in [10]. The results implied that the sensors
with bad channels and bad observation qualities should be The sensor network S represented as an undirected graph
turned off to conserve energy. In [11], a sensor selection al- G(Vens) where V { 2,..i, N} denotes thesetg vertic
gorithm was proposed to reconstruct the data image of spa- (seso ns and i t

{ jistthe edg t.ograph iS connected if there exists a path in S for any twotially bandlimited physical phenomenon based on blue noise vertices i and j. In this paper, we assume that each sensormasking. With the assumption that all sensors are identical transmits at a constant power level P and the receiver hasand the quality-of-service (QoS) can be expressed as a func- an ambient noise power level No. Let X(i) represent the
tion of the sensor number, the paper [12] gave an adaptive position of sensor i. Then, the transmission from sensor i is
sensor control scheme to minimize the number of active sen- . ' .
sors. In [13], an innovations-based framework was proposed
to select sensor measurements to estimate some unknown P
parameter under a desired distortion constraint. All these Nod (5)
works considered a centralized network, in which there is a
fusion center responsible for the network management and where di = X(i) -X(j)l and ae (2 < ae < 6) is the known
global computation. pathloss coefficient. Equation (5) models a situation where

Distributed algorithms are attractive in large-scale net- a minimum signal-to-noise ratio (SNR) is necessary for suc-
works where a centralized solution is infeasible, non-scalable, cessful receptions and signal power decays with distance r
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ID
0 2.2.2 Near Correlation (NC)

0 / e ''A /' * " 0 \ In this model, each sensor is only correlated with its neigh-
,----,,-,' / boring nodes and is independent of other sensors beyond the

,' ', @0,,'/ 0) , @,\ distance rp, i.e., Cij = 0 if j AV(i). This is motivated
,0 1\ 7/\\,,> X, by the fact that the correlation decays with the distance

between sensors and approaches zero if the corresponding
v \ ---=-r Isssws1->t-- * sensors are far apart [20].

2.2.3 Far Correlation (FC)
Each sensor is not only correlated with its own neighbors,

0 Sleeping Node but also with other sensors. The correlation is assumed to
0 \ A / * Active Node be a decreasing function of the Euclidean distance between

0 /, A Signal Source the corresponding nodes [20, 21], i.e.,

Cij = F (Cii, Cjj, dij) (1
Figure 1: A schematic representation of distributed where Fj Xni x R1 Xnj x m Xnx
sampling in wireless sensor networks. These correlation models will be used to test our dis-

tributed sampling and estimation algorithms. Although the
as 1/ra. Thus, the receiver should be within a distance of design of distributed algorithms considerably depends on the

correlation model, we show that these models can be unified

, /P(6) in the proposed framework.

from the transmitter such that a reliable wireless link can 3. INNOVATIONS DIFFUSION SAMPLING
be ensured. Therefore, the edge set is defined by In this section, we present a distributed framework for

A{(i, j) .<} (7) sampling and estimation under a certain distortion constraint.
Starting with an initial sensor, the set of active sensors col-

and the neighbor set of sensor i is defined as laboratively activates one sleeping sensor at each step. The
.AF" g 8 procedure continues until the set of active sensors achievesA(i) {I (ij) C E} (8) the desired estimation fidelity. Although there is no direct

Sensors i and j are termed neighbors if their distance is relation between the system lifetime and the number of ac-
less than or equal to rp3. As illustrated in Fig. 1, sensors tive sensors, reducing the number of active sensors generally
within the distance of the connectivity radius rp3 are directly leads to energy efficiency. In general, finding the exact min-
connected and are neighbors of each other. imum number of measurements to achieve a desired fidelity

For a sampling decision An= {ii, i2,... in }, the active is an NP-hard problem. Thus, the proposed approach will
and inactive neighbors of sensor ik (ik c An) can be respec- pursue a greedy solution that provides useful sub-optimal
tively represented as approximations at polynomial complexity. Assuming that

each inactive sensor can listen to the control channel for
AfA(ik) =f(ik) n (9) the awakening message, at each step the sampling algorithm

and will select the most informative sensor with respect to the

ANl (ik) = Ar(ik) \ An (10) previous ones in order for the fidelity to be satisfied with
the nearly minimum number of active sensors. The results

The local knowledge of sensor i contains not only its own will exhibit good performance at reasonable cost and will be
distortion matrix and noise covariance but also its neighbors' tractable for both analysis and implementation.
distortion matrices, noise covariances, and correlations. Let
AV'(i) = {JA(i), i}. Then, each sensor i has the knowledge 3.1 Uncorrelated Noise
of {HAg(j), CA (j)} at the stage of deployment. If the noises are spatially uncorrelated, i.e., Ckl 0 for
2.2 Spatial Correlation Models k / 1, then (3) can be written as
The computation of the linear m.v.u.e. of 0 from the D (An)_1 HTH7QjkH (12)

noisy measurements can be facilitated if the network has a ik ikik Hi
priori knowledge of the covariance structure C. In practice,
the matrix C can be estimated from repeated measurements This expression decouples the contribution of each sensor to
at all sensors. Nevertheless, this approach is not efficient if the total MMSE value D(Aik)i Each term HT C ik
the number of sensors N is large. Therefore, a model that the essential properties of an information measure in that it
characterizes the correlation between sensors will be useful. is
In this paper, we consider three different correlation models 1. non-negative definite,
as follows.

2.2.] Uncorrelated Noise (UC) ~~2. and additive for independent observations.

The measurement noise at each sensor is uncorrelated Intuitively, the more information sensor '1k has (i.e., the
with other sensors. If the noises are Gaussian, then they larger H7T C7jk ikH, is), the more its contribution to reduc-
are independent with each other as well. ing the MMSE. This suggests that at each step the network
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should choose the most informative sensor in order to maxi-
mally reduce the MMSE. Specifically, assume that the nodes
An-1 have been selected. Then, at step n we would choose
from the coverage of An-1 a sensor in whose informationi
measure HT C7-HiUn is the largest. In this way, the result-
ing D(An) will be the smallest compared with other choices. /

Vi/
3.2 Correlated Noise

However, the noises are generally spatially correlated in
practice. In this case, the contributions of the individual VilAn-1
sensors are coupled in the MMSE expression D(An) in (3).
We thus need to develop a procedure to find the most in- span (An-i)
formative sensor with respect to the previous selected ones.
To achieve this goal, we start by whitening the observation
data subject to the order dictated by the choice of sensors,
and then obtain a set of transformed measurements with
uncorrelated noises.

Suppose that we have already selected n - 1 sensors, i.e., Figure 2: A geometrical interpretation of the rela-
An-1 {il,i2, ,in-i}. For in V An- , we define its tions between vectors vi, ei, and vilAnI< with respect
innovation [3, 22] as to the space spanned by {vi1,IVi2... ,vinI}, denoted

A by span (An-1).
ein YinY- Yinl An- (13)

where We now introduce a transformed form of Yin with respect

Yin.lAn.l = Hino + VinlAn-l (14) to {yil, Yi2,... , Yi- } as

with ½vin A representing the projection of vi onto the Zin(= .)n (21)
affine space of the previous selected measurements, denoted Yi
by£{yfYi2,...I.... ,yin_I}. The quantity ein in (13) pos- i.e.,
sesses the new information contained in sensor in and not
in any of the previous measurements {Yil, Yi2, * *3Yi}= G... ',in1O + e (22)
Now note that vinlAn_I is given by where

= B C, 1 (15) G-inlAn-1 = PinAn1 (HAn>) (23)

where The contribution of zin to the MMSE is additive respect to
the previous measurements in An-1 since1

BinlAn-I = (Cinil Cini2 ..Cin>in>-I) (16)
zin L{yi1,Yi2,... IYin-} (24)

Combining (1), (13), (14), and (15) gives
Moreover, the linear m.v. u.e. of 0 given {zil, zi2,... ,zi}

ein= Vin- TinAn- coincides with the m.v.u.e. using {YilI,Yi2, .. ,yin}. This
result is stated as follows.

(BinlAI4 CAn1 I) yVAi) ( THEOREM 1 (EQUIVALENT ESTIMATION). Conssider the
Iirnear model irn (1). For a given set of sensor measure-It can be verified that ein Vi for any j C An-1. Fig. 2 mentmeit yil Yi2, ... Yin }, the mr'nzmum-vartanice-unibzasedillustrates a geometrical interpretation of the projection re- lreretmtro seuvlrtt htetmtduii

latiiisip etweiiei,'~ilAn- nd i. hus th marix It'near estzmator of 0 Z's equz'valent to that estz'mated ust'ng
lationship between e,t,and vThus, thematrix the transformed measurements as tin (22), i.e.,

A
A

- I(-ci J I) (18) O(YA) = O(ZAn)
/n \ 1n

projects v, onto a space orthogonal to the previous noises = 1: CTA1ojects _~~~~ikGJAkIQi_1G)iA
-1 ikG7AklIQikZik

(25)
LEMMA 1 (INNOVATIONS). Given a samplirng decisioin An,

the crrespndin innoatio procss {I7 n= 1 has the im- and the resultz'ng MMSEs are t'dentz'cal, i.e.,the corresporidirig iririovatiori process {e ik k a tei
portant property D (An) = (HT C-A1 HAn>1

T) f0 ik #~il
{ Qi otherwise (19)

where QikC is the covariarice matrix of ei,k arid has the form (i1£= Q 1Gk1k) (6

-1 T 1Specifically, for in f! An-i1 and all 'tk C An-i,: it hasQikC Cik<ik -BikIAklC7L-Cvk_ lBikIAk4l- (20) B (ziw - Eziw)T ( i- Eyik) 0.
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The advantage of working with the transformed quantities Algorithm 1 Innovations Diffusion Sampling
{Zik} L is that the noises {eik}k1 in the model (22) are 0: Start with n = 1 and A1 = {ii}.
now uncorrelated and the contributions of the individual 1: while DA, > Do do
sensors to the MMSE can be decoupled. 2: For each ik C An-l, compute

3.3 Iterative Diffusion Sampling ik arg max u(jlAn-i) (30)
Diffusion is the means by which innovations become use- 3: repeat

ful by spreading throughout the current active sensors. The 4: Each active node ik sends a message Mik in-
sampling algorithm assumes an active node at the beginning, a * * -
i.e., A1 = {il, which serves as the seed to activate other c(iuin tAnhl) to its active neighborssA(ia).
sensors. Sensor i1 chooses within its inactive neighbors a U A5: Upon receiving the messages from neighboringsensor and then activates it. At the n-th step, the current n ecensortki ag-i updateitvuof. . .5 ' n~~~~~~i'odes, each sensor ik in An-l updates its value ofactive sensors An-l {il i2,. in-.i} make a connected imax by
network and collaboratively activate one sleeping sensor that k
is within the coverage of An-_. To meet the fidelity require- ik arg max lAn-1) (31)
ment with a nearly minimum number of measurements, the JGfA(2)
sampling algorithm should choose the sensor that is most and stores the associated utility.
informative with respect to the previous sensors An-1. Be- 6: until all the active sensors reach the consensus.
fore we proceed to present the algorithm, we need to define 7: Let in k
a utility function that measures the innovation of the sensor 8: Sensor in is activated by its closet active neighbor and
measurement. inherits the necessary information related to An-li

According to (26), we define a utility matrix as 9: Each active sensor adds in into the set of active sen-
A GT -iG 7 sors,i.e.,An {iii2...,in}andn=n+1.

Ui n-IA, = inlAn lQin G n-IA1 (27) 10: end while
which has the essential properties as an information mea-
sure. Recall that the set of sensor observations An_l has
an MMSE DAn-1 = Tr [D (An-1)]. From (26), the MMSE Mimiax{ Ukax(im ax An-l)} (33)
with measurements {An- i, in } can be written as

However, the sensors might not have global neighborhood
D.A, =Tr [(D-1 (An-1) + UinAnl-1) (28) knowledge of the whole network in some circumstances. In

such situations, the diffusion sampling algorithm can be im-
Then, we can define a utility function as the difference be- plemented by adding necessary information into the mes-
tween DAn- and Dv4, i.e., sages that are exchanged between nodes. Then the sensors

A can collaborate with each other to activate the next sensor.
U(injAn-l) = DAn1 - DAn To achieve this goal, the message sent by sensor ik in line
F'l'r[D (>n 1) (D-i>n 1) + U~~Inbw1) ~] 4 should contain the distortion matrix and noise covariance=Tr [D (An-1) - (D-1 (An-1) + UinlAn-1)of sensor imax in addition to ma IU(imax An-l)}, i.e.,

=r [D (An-1) (D (An-1) + Ua 1 D (An-i)] (29) 111 {aimx (jaX An-i), Hjkax, CUhaxjhax} (34)

where the last equality follows the matrix inversion lemma To avoid transmitting redundant information, in line 4 of
[3]: the algorithm each active sensor sends the message Mik to
(A + BCD)' Ai - AlB (C-i + DAiB)-i DA- its neighbors only if the message content has been updated;

Although the definition of the utility function is not unique, otherwise, it turns off radio to save energy.
it can be seen that u(in An-i) in (29) indicates a good mea- Since the number of active nodes is finite, the consensus
sure of the new information provided by sensor in can be reached in line 6 within a finite number of iterations.
The basic strategy of diffusion sampling is to successively Then, each sensor can locally construct the matrices HAn

choose one sensor with the maximum utility from the sleep- and Can, which will be used for activating the next sensor
ing nodes within the coverage of An-i, i.e., if DAn > Do and for data fusion otherwise. For the UC

and NC models, constructing CAn is straightforward. If
'nargmax u (An-i) (32) sensor noises are characterized by the FC model, then each

kc=1 Al(ik) active sensor can locally construct CAn using (11) with the

by local computation and message exchange between neigh- assumption that sensor localization has been performed, i.e.,
boring sensors. The procedure continues until the desired sensor ik knows the position of sensor in. Afterward, when
estimation fidelity Do is achieved. The details of the sam- sensor in is activated in line 8, it inherits the information of
pling algorithm are presented in Algorithm 1. {HAn -1, Carl1 } from its closest active neighbor and locally

Consider the case that each node has full knowledge of the constructs its own {HAn, CAn }.
distortion matrices {Hi}iNl and the covariance matrix C at In brief, the algorithm successively adds the sensor that
the stage of deployment. Then each active sensor can locally has the maximum utility into the set of selected sensors until
compute (30) without communicating with its neighboring the MMSE is less than or equal to the desired estimation
sensors. The messages exchanged between sensors only need fidelity level. This scheme ensures that the set of selected
to contain the index and associated value of the utility func- nodes make a connected graph at any time and the number
tion, i.e., of active sensor is no more than necessary.
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Figure 4: The operational lifetime versus the esti-
01 01 mation fidelity constraint in a wireless sensor net-
0 0.5 1 0 0.5 1 work with constant transmit power. For each radio

range, the results are averaged over 100 simulations.

Figure 3: The connected network of N =200
randomly diTribuonntedsensorstwithodiffe ad amount required for computing and communication. It is

ra y d e sassumed that each sensor has an omnidirectional radio an-ranges. (a) r= 0; (b) r= 0.12; (c) r 0..15; (d) tennas at its transmitter, with which the sensor can trans-
ro=0.18. mit a common message to all of its neighbors simultaneously

with a single broadcast.
4. NUMERICAL EXAMPLES 4.2 Constant Transmit Power

This section presents numerical results that illustrate the
effectiveness of our proposed sampling scheme. We are in Int transml tter at each sensorhas a con-
particular interested in the operational system lifetime of tn rnmtpwrlvlPrp o ie ai ag p

We assume that during the sampling stage the computationthe networked sensors. .. cmenergy of (30) expended by sensor i is Emp = K1 and the
4.1 Simulation Setup inter-node communication energy expended by sensor i in

each iteration is proportional to
We randomly generate N = 200 sensor nodes in a unit

square [0, 1] by [0, 1]. The connectivity of the randomly Emm(r) - l2 (1 )(36)
distributed sensors is shown in Fig. 3. Consider a simple E12 ( + J)
linear model yi = 0 + vi, i = 1,2, .. N. The noise co- where Pa(r) r'No/, K1 and K2 are certain constants.
variance matrix C is randomly generated according to the D t e s

spatial correlationmodel D~~~Luring tnhe estimation stage, the total energy expended byspatial correlation model sensor i is assumed to be

Cij = crr;exp (3ad5)) i # ( ESt(r) K3P(r) (37)23o7 log(adj02 (1+ /)(

where o2 , i = 1, 2 ... N, are randomly generated with a In our simulations, we set Eicomp 0.00001, Ecomm (0.12)
uniform distribution in (0,1]. The correlation is charac- 0.0001, E est(0.12) = 0.01, and a 3.5.
terized as an exponential function of the distance between Figure 4 illustrates the operational lifetime of the network
nodes. with different radio ranges against the fidelity constraint Do.
The sensors are assumed to have a unit of initial energy As seen from the observation, the network lifetime increases

after deployment. Each work period starts with a sampling when the fidelity constraint becomes relaxed. The reason
stage and ends with an estimation stage, where the dura- behind this is that during each work period, a slack fidelity
tion of the estimation stage is assumed to be much longer requirement requires only a small number of measurements
than that of the sampling stage such that the cost caused by while a stringent fidelity constraint needs a large number of
sampling does not result in much overhead. In the sampling active sensors. The number of sensors activated during each
stage and starting with a seed node that has maximum left- work period has a direct influence on the network lifetime.
over energy, a group of sensors are activated for estimating The radio ranges of sensors are also of importance for the
the unknown parameter 0 later in the estimation stage, and operational lifetime. Provided that the sensor positions are
then are powered off at the end of the period. When the fixed, the number of neighboring nodes of each sensor is de-
next period starts, a new group of sensors will be activated termined by the radio range rp. More specifically, if the
and the procedure repeats until the sensors deplete their en- sensor has a larger radio range, i.e., the transmitter has a
ergy. We neglect the energy consumed by sensors during the larger transmit power, then it can communicate with more
inactive duration, assuming the amount of energy required neighboring sensors. Consequently, a large radio range will
for listening to the awakening signal is much less than the be able to keep good connectivity when some sensor nodes
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X 104 5. CONCLUSION
Max. Radio Range = 0.12 In this paper, we proposed an innovation diffusion sam-

o 2.5 Max. Radio Range = 0.15 pling scheme for distributed estimation in sensor networks.
Max. Radio Range = 0.18 The framework suggests that selecting the most informative

2- . /sensor measurements for estimation will reduce the number
E of active sensors and prolong the operational system life-
M 1.5 time. The main advantages of the proposed scheme lie in

that it can be implemented efficiently in an asynchronous
and scalable way. The performance of the sampling scheme

CZ = wtis evaluated through numerical simulations. Some interest-
CD 0.5 ing extensions are worth further investigation for important
O practical issues such as finite-bit communication, transmis-

-7 -6 - ; sion errors, and reliable communication protocols.
10-7 10-6 10-5 10-4 1o-3
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