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Abstract—This paper addresses the issue of robust filtering for time varying un-  subject to (2). The following result is proven in [12].
certain discrete time systems. The proposed robust filters are based on a regularized

least-squares formulation and guarantee minimum state error variances. Simulation Theorem 1: The problem (2)-(3) has a unique solutiénthat is

results indicate their superior performance over other robust filter designs. given by
keywords: regularization, least-squares, robust filter, regularization &= [@ +ATWA]71 [ATWb+§EfEb] o)
parameter, parametric uncertainty.
where
I. INTRODUCTION A ~
I - _ Q = Q+pEE, ®)
The Kalman filter is the optimal linear least-mean-squares estimator — N T b T
W = W+ WH(BI-H WH)'H' W (6)

for systems that are described by linear state-space Markovian models
[1]. However, when the model is not accurately known, the perfor- ~. ) L
mance of the filter can deteriorate appreciably. This filter sensitivity #d the scalas is determined from the optimization
modeling errors has led to several works in the literature on the devel- ~
opment of robust state-space filters; robust in the sense that they attempt B
to limit, in certain ways, the effect of model uncertainties on the overall

filter performance. Some of the well known approaches to state-spagere the functiorz(3) is defined as follows:

estimation in this regard ari. filtering, mixed H2/H filtering,

set-valued estimation, guaranteed-cost designs and minimum variance G(B)=2"(8)Qx(8) + B||E.z(8) — Es|? @©
filtering (see [2]-[11]). In [11], a robust filter design framework was T

proposed that performs regularization as opposed to de-regularization. + [Az(B) — b" W(B)[Ax(5) — b]

The design in [11] involved choosing certain Ricatti variables so as \ith

enforce a local optimality and robustness property. In this paper, we

pursue the design of such regularized robust filters and consider two W(B) = W+WH(BI-H WH)'H'W

general classes of uncertain state-space models. We consider uncer- QB) = Q+BETE,

tain model descriptions that involve norm bounded uncertainties for

the output matrices, and stochastic and polytopic uncertainties for tagd .

state matrices; both descriptions are common in applications. For each z(8)=|Q(B) + ATW(B)A] [ATW(B)b + ﬁEZEb] 9
class, we shall design robust filters that bound the state error covariance

matrix globally. The robustness criterion used is different from priofThe notationX " denotes the pseudo-inverseXf]

robust designs (e.gH~, guaranteed-cost or set-valued estimation) in O
that, it is based on robusgularization In this way, the resulting filters

are well SL_Jited for o_nline/re_al-time filtering applia_:ations involvir_lg bothy \vas shown in [12], [16] that the functiofi(3) has a unique global
time-invariant and time-variant models. Simulation results are includégdnimum (and no local minima) over the interval > |HTWH|,

to illustrate the superior performance of the proposed robust filters OV&lich means that the determination E)fcan be pursued by employ-
other robust designs.

ing standard search procedures without worrying about convergence to

= arg min G(B) (7)
B>HTWH||

Il. LEAST-SQUARES WITHUNCERTAINTIES undesired local minima. It was further argued in [11] that a good ap-
T ) ) proximation forg is to choose it ag = (1 + «)3; for somea > 0 and
Let J(z) = 2 Qz + R(x) denote a cost function with whereg, = |HTWH||.
T
R(z) = ((A+6A)x— (b+5b)) W((AJF(;A)xi (b+5b)> B I1l. THE STATE SPACE MODELS
We now use Thm. 1 to design two robust filters. Each filter will be

whered A denotes arV x n perturbation tad, 5b denotes anV x 1 applicable to a particular class of model uncertainties. Thus consider

perturbation tch, and {64, 5b} are assumed to satisfy a model of thé@nn—dimensional state-space model of the form:

form
Te+1 = Frrp+ Grwg (10)

[6A 0b] = HA[ E. B | @
Y = (Hk + AHk)mk + vk, k>0 (11)

whereA is an arbitrary contraction|A| < 1, and{H, E,, E} are
known quantities of appropriate dimensions. Consider then the cQhere {wy,, v} are uncorrelated white zero-mean random processes

strained two player game problem with variances
z =arg In;n {?}4?‘(3;} J(:L’) (3) Ewsz = Wk, Evkvz =Vi
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where M}, and E;, are known matrices, whilé\;, is an arbitrary con- A. Polytopic Uncertainties

: T
traction, Ay Ay < I. We consider first the case of polytopic uncertaintieginas in (13).

. . - Our objective is to design a robust linear estimator for the state variable
We shall consider two types of uncertainty descriptions for the st%g of the form

matricesF}: one is in terms of polytopic uncertainties and the other
is in terms of norm bounded stochastic uncertainties. In the first case, Ee = Fpr@rp—1+ Kpryr, k>0 (18)
we assume thafy, lies inside a convex bounded polyhedral domfin 4 - P4 (19)
described byn vertices as follows: k+1lk Focklk
for some matrice$, , and K, ;, to be determined in order to minimize
the worst case error variance of the state for all uncertainties, and where

i=m i=m
Ki = {Fk = Zai,kFi,k7 i >0, Zai'k = 1} (13) Fg,. denotes the centroid of the polytojig.:
=1 i=1

Observe thafCy, is allowed to vary withk. In the second case, we Fr.= iz Fix (20)
assume thaFy, is described by mi4

Fy = Fi,c + AFy,  AFp = NpAyJy, (14)  Assume first that thé, are fixed; we will incorporate the uncertainties
in F}, soon. With uncertainties in the output matridés alone, prob-

for some knownF, . and where, is a random matrix whose entries
lem (17) becomes

are zero mean and uncorrelated with each other, and such that
EARAL < pal (15)

for some knowrp . min max ( lz - ik|k—1”i};l + llye — (He +5Hk)93”;;1 ) (21)

IV. ROBUST STATE SPACE FILTERING

When uncertainties are not present in the model (10)—(11), it\tlllvﬁhéggocr?; be written more compactly in the form (1)~(3) with the iden-

known that the optimal linear estimator for the state is the Kalman filter
[18]. This filter admits a deterministic interpretation as the solution to
aregularized least-squares problem as follows !Let
A ] ] z  — Azk —Tpp—1}, be— yr — HpZp_1
Zgk—1 = anestimate oy given{yo,y1,...,yx—1} A ——  MpARER

A . . R _1
= an estimate ok given{yo, y1,...,Yk—1,Yx} 6b  —  —MpApEpdp_1, Q< Py

W  «—— Rp', He— My, E, — Ej

Tk|k

Given the predicted estimaig,,_, and an observatiog., the filtered

A N ; - ver ) By, «— —Epdgp_1, Ae— Ay, A Hy
estimatety,,, that is computed by the Kalman filter is the solution of

rnzin [Hx — i’mk,l”f,k,l + |lye — HWH%;] (16) From Thm. 1, the solutioty,,, of (21) is given by

Egpp = Brp1+(Py '+ BEL Ex + HE Ry " Hy) ™!

where P, and Ry, are the state error covariance and the measurement Ta-1, o . AT - (@2)
. . . . o {Hy R, (yx — HxZpjk—1) — BE, Exdpp—1}
noise covariance matrices, respectively. When uncertainties are present
in {Hk, Fi. }, we formulate a robust version of (16) by solving insteadvhere
the min-max problem : R' = (R — B MM )™ (23)
If we now introduce the matrix
A —1 AT T H—1 —1
min max (fosik‘k,lw,l + |lyx — (Hg + 6Hp)z||% 1 ) 17) Qr :(Pk + BE; By + Hi Ry, Hk) (24)
T §Hy,oF, Py Ry
This formulation was proposed in [11]. Compared with other robufiten the expression fdr,, becomes
designs, it has the advantage of performing regularization as opposed . . - S .
to de-regularization, a property that is useful for on-line/real-time op- e =(I — BQrEf By — QuHy Ry, Hy)Tk)k—1 (25)
eration since the resulting filter will not require existence conditions. + QkaTR;lyk

In [11], the weighing matriced’, in (17) were propagated through

a Ricatti recursion that enforces a local optimality criterion. In oun terms of the paramete&p,. Noting thatwy is a zero-mean white
first filter below, we shall instead determi#& so as to minimize the random process, we let the following be an estimaterfor; given the
state error covariance matripobally. We do so by showing how to re- measuremenys:

parametrizeP,, and Ry, in terms of a single paramet€);,, over which Bk £ Fhooek (26)
the global minimization of the error covariance matrix reduces to a lin-

ear convex problem. In our second filter, we shall derive a more effife thenget R

cient procedure for updatingy,. The procedure does not require solv- Ttk = Fpe@rik—1 + Kpkr (27)
ing a linear convex problem at each iteration and has the same compHereF, , andK, ;. are defined in terms a;, as

tational complexity as the Kalman filter.

Fp Fr.o(I — BQREL Ex — QuHL R, " Hy)  (28)

Fr..QuHFR' (29)

1When uncertainties are not present, the qualification “estimate” refers to the linear-least-mean-squares
estimate. Kp,k



DenotingZy = xx — Zxx—1, We define the extended weight vector ~ This condition guarantees thit, will remain bounded for alk.

2 (% 30 i
=\ g, (30) | Assumed uncertain model. Egs. (10)—(13).
Thenn;, satisfies Initial conditions: o = 0, Iy = diag{P.,,el}.
Met1 = Feme + Grug (31) |Step1l. If My = 0, then set3, = 0. Otherwise, set instedd
where B =(1+ a)Bi, whereBy = | M Ry, Mg
up = Wk a= G 0 (32) Step 2. Using 11, compute{Qx, I1x+1} by solving
Vg ’ G 7Kp,k
o F, 0 min  Trace(Ilx41)
F, = (Fk Py Ky H Fp,k> (33) Qr >0
and the covariance matrix of, satisfies subject to the inequality
i1 = Bl BT + GrSuGE (34) —i41 Fi.I0; GkS;/Z
O EF I 0 <0
where SkT/?C‘;kT 0 _7
Wi 0
5= (M) @ -
k where{Fx, G, Sk} are defined by (32),(33) and (35).

andTl, is the covariance matrix afo. Now observe that the expres-| Step 3. Updatesy, to £x+1 as
sions for{ F, x, K, 1} are parametrized in terms of the single paran
eterQy. We shall then choosé,, so as to minimize the covariance Brpr = Fprle + Kpryr
of ni. In this way, the resulting filter will satisfy the robustness cond
tion (21), in addition to minimizing the state error covariance. This
achlt_eveAd as fgll/o\ws.. Flrst.note th@t, in (24) is to problem (21) as the For = Foo(l— BOLETE, — QkH}Z’RIZIHk)
matrix Q + A* W A in (4) is to problem (1)—(3). Therefor€), must T A1
be positive definite so that thig,,, is guaranteed to be the minimum of Kpk = FreQuHg Ry

(21). Then we shall choosg; > 0 so as to minimizdl,; of (34). R,' = (Ry— B 'MpMI)™!
This can be obtained by solving

_g/vhere

with Fy . from (20).

Qmis 0 Trace(Ilx+1) (36) Table T Regularized robust filter for polytopic uncertainties.
k

subject to the inequality
M1 > BILEY + GrSkGi (37) B. Stochastic Uncertainties

or, equivalently, . . L
q y We now consider the case of norm bounded stochastic uncertainties in

My B GRS Fy, as in (14). We derive two filters; one through convex optimization
. F" _1I, Ok <0 (38) method and the other through a suboptimal ricatti equation method. We
ST/ng 0 I - first look at a filter that is derived in terms of convex optimization.
k k -

In order to incorporate the polytopic uncertainties in g as defined
by the setdCx, in (13), we need to solve the above optimization pro
lem with F}, taking values at then vertices of the convex polytopéy,
i.e., from the se{ Fy , Fo k) -..... , Fim 1 }. Since the inequality (38) is  Here again, our objective is to design a robust linear estimator for the
affine in F, the @y, thus found will ensure minimum error covariancestate variabler;. of the form

IIx over all possibleF;, in Ki. Therefore, the time varying robust fil-

ter is given by (65)—(67), wher@y, is the positive definite solution of

(51)—(38) withF;, taking values on the vertices of the convex polytope T = Fpr@rp-1+ Kpryr, k20 (40)

K, and initializingIly = diag{P,, eI} for some positive definité,. Zrqie = Fre@rr (42)
Note that there always exists a solution to (51)—(38). This is because,

at every time instant, Q. = €I for ¢ > 0 is a feasible solution. The
filter is summarized in Table 1. for some matrice$’, », and K, j to be determined in order to minimize

the worst case error variance of the state for all uncertainties, and where
Infinite horizon case In this paper, by the notion of stability in the in- Fx,. denotes the nominal state matrix. Proceeding in the same manner
finite horizon case, we mean that the variables associated with the fiRgrin the previous section from the robustness condition (21), we know
are bounded for alk. Assume||Fy..|| < 1 and choos&)y to satisfy that the expressions fdif,,x, K, } Will be parametrized in terms of
(51)—(38) as well ag|Fx|| < 1. This additional constraint is easily the paramete,. We shall then choos@;, so as to minimize the
represented in terms of a linear matrix inequality in the varighleas ~ covariance ofy,. Heren, satisfies :

bI§.1 A robust filter

I FF ~ o ~
<Fk I ) >0 (39) Met1 = (Fr,e + NeAJe)nie + Grug 42)



where

Let 8 = ||Frel* < 1, |\Nka || < ~ and sinceQ lies inside a

P (w’“) (43) bounded sef, assume|G SkGY || < ¢. Then
_ Fk . 0 B . i=k—1 1 i=k—1 o1
Fie = (ch — Fpp — Ky 1 Hy Fp,k> (44) [Mkta ] < B%(Ho|| + Z; CANNEE S ZO: B paduy
Ny, ( ) (45) or )
) [T || < [ITTol} + 5 B(C + pad?)
J. = (0 0) (46)
We then have
and the covariance matrix gf, satisfies [ Tes i Tl < e [l T |12
Hk+1 = E{(Fk,C—I—NkAjk)Hk(Fkyc—l—NkAjk)T}—‘erSkég (47) < (”HOH + 1 ((: + pAOtk"/))
- -p
whereE denotes the expectation operator and ~
where||Ji+1||*> < x. If & = & can be chosen for eaéhsuch that
Wi 0
S = ( 0’“ Vk) (48) ) 1
a>x{||non+m<<+pm>} (55)

Let IT;, satisfy

Wyi1 = By G FL + GeSLGE 4 pad Nk N (49)

we see thal| Ji+111,41.J{ || is bounded for alk. A fixed & chosen

according to condition (55) along with (54) guarantee fiiatandII;

and choosé;, such thatiy, — JITxJ¥ > 0. Then will remain bounded for alk.

awl — Tl JJE >0 (50)
and

Oet1 < Fk,chF];l:c‘f'GkSkéz+PA&kaNE

This suggests that we can choage by constructing a sequence of
matriceslI; so as to solve:

min Trace(flkﬂ) (51)
Qr >0

subject to the inequality
or, equivalently,

~iy1 + padrNeNF Fkﬁk ékS;/Z
I, F —1g 0 <0 (53)
Srater 0 —I

Note thatll, < 11, for everyk. The filter hence derived is summarized
in Table 2.

Infinite horizon case We now describe some sufficient conditions

for infinite horizon stability (i.e., for the matricedl, I } to remain
to satisfy (51)—(53)
as well ag|Fy .|| < 1. This additional constraint is easily represente
in terms of a linear matrix inequality in the varialdlg, as

I FT,
<Fk,c : > >0 (54)

Let a fixed& be chosen in the following way. Consider the recursion

]i[kJrl = Fk,cﬁkﬁgc + GkSGz + pAéékaNg
Then

s | < N Esel* Il + 1GRSGEN| + padul| NN |

Assumed uncertain model. Eqgs. (14).

Initial conditions: o = 0, [Ty = ITp = diag{P,, eI}.

Step 1. If My = 0, then setﬁk = 0. Otherwise, set instead =

(1 + )bk whereﬁl k= |MIR;'My|. Chooseds such that
ar — JpIp JE > 0 for IT,, satlsfylng

M1 = By JIFL, 4+ GuSLGE + padu Nk N

Step 2. Using 1, andé@, compute{Qy, ITx. 1} by solving

min Trace(f[k+1)
Qr >0

subject to the inequality

~Mgy1 + pacr N NE ka[k GkS;/Q
I, BT 11, o |<o
Sr2Gr 0 —I

where{ Fy, G, S} are defined by (32),(33) and (35).
Step 3. Updatezy to 41 as

Trht1r = Fprle + Kpryk
D
where
d For = Fre(I — BQREL Er — QuH{ R Hy)
Kpr = Fk,chchTRJZl
R.' = (Rw— B "MpME)™!

Table 2: A regularized robust filter for stochastic uncertainties.

B.2 Another Robust Filter

Consider again equations (47)—(51). We will now show how to gener-
ate anewsequence of matricd$;, andIl, such thafl, < II, < II.

This construction will enable us to avoid the solution of the optimiza-
tion problem (51)-(53) at each iteration thus reducing the computational



complexity. At every iteration we would find a suboptindg that min-  all Q, that guarante€’z , < Al is a convex bounded sétabout the
imizes the boundl,, of the error covariance matrii,. Attime instant origin in the normed vector space of all matrices of dimension n.

k + 1, assuming we havH;, < II; < IIg, then the state error covari- If Qg,op: lies insideC, we chooseQr as Qr,op:. Otherwise,Qy is
ance is bounded by the, 2) block element of the matriki, . ; defined chosen as a matrix that is closesid@,,. in the Frobenius norm and

by simultaneously lying inside the sét Now we will derive an upper
. _ .5 _ . —— bound forIlx; in the form (which is compatible with the form we
Hpt1 = FeelloFy e+ GeSuGr + paduNi Ny started with in (56)):
The .sequence of matricé$, are restricted to have a structure of the . B Yiir Yisr — Zint
form: g1 = N (60)
ST Yy Yi — Zx 56 Yit1 — Zrt1 Yer1 — Zrga
L=\v.-z vi-2z (56)

. . . . for some matrice¥% 41 andZ,. Choosep, as the maximum singu-
and are generated as will be explained in the sequel. Moreover, with 8t -1 .c of7 1 ;3 V\Ijﬁére k1 B 9

time instantk, with IT,, given as in (56) we have that
f <17k+1 Xk+1 > (57) B = Fk;chHl?Vk_lHk(Yk - Zk)HkTVk_lHkaFl;r,c
k+1 = | & o 5
TT\XL Yen - Zen 82 Fr,cQuEY EvZ1Ef ErQi Fic
+FcQuHy Vi HeQuFy.

where
> T . T T —FroQuHi Vi " He (Y — Zi) i
Yirr = FreYiFgc+ pade NN, + GeWi Gy T T
~ T T+r—1 T —BFk,cZkaEk Eka,,;
Zit1 = FreZpFie— Fre,cQrHp Vy, HpQrly .

+Feo(Ye — Z)Hy, Vi "HeQi Fy .
Tyr—1 T Assumed uncertain model. Egs. (10)—(13) and (14)—(15).
+FkcQuHy Vi He(Ye — Zi) Frec Initial conditions: &9 = 0, Yo = I, Zog = pl ,
— 3 Fr.c Qi E Ex Z1Ej, ExQuFr.c My = ( Yo Yo - ZO)
Ty,—1 Ty,—1 T Yo— 20 Yo— 2o
_Fk,CQka Vk Hk(Yk - Zk)Hk Vk HkaFk,c Step 1a. Using{ V%, Hy, Yi, Zi } compute{ R, 1, Qr }:

Xit1 = BFrcYiEL ExQuFi . + Foo(Yi — Zi)Ey g

AN NT + G GT Rex = Vi Hp(Yi — Zi)H,

+pAC¥k kiVE + G Wi k Qk,opt — (Yk _ Zk) _ (Yk _ Zk)HgR;in(Yk _ Zk)

Also, the(2, 2) block element of1,, ; is given by
oy Step 1b. If M;, = 0, then se3,, = 0. Otherwise, seBx = (1 + a)By,, o > 0.
Hk‘+1 = Cl,k + C2,k (58) Determine the largesD, = £Qp,op+ for some positives such thatCs ;, < AT for
some smal\ > 0.
where Step 2. Compute the parameters:
T ~ T N
Cix = FreYo— Zi)Fyc+ pacuNeNg Fpi = Fno(—QwBELE, — QuHI Ry 'Hy,)
+GEWiGE + FieQuH} Vi H Qi Fil. Kpi = FPrcQeHg Ry’
_ Ty,—1 _ Ty,—1 T
—Fo(Ye — Zk)HkTVk_lHkaFZC B = FyQrH,V, Hpg(Yy — Zx)H, V, HpQrFy .
Ty, -1 T +8% Fy,cQu By ExZy E} By Qi F,c
_Fk,chHk Vk Hk:(Yk - Zk)Fk,c T k71 ¥ T
S p o - +Fr,cQrH, Vi, HeQrFy
+F QuH vV, Hi(Yy — Zk)H, V, HipQrF; _
; k,cQk kT v Hi( kT k) H Vo HeQrFr . P QuHT Vi H (Vi — Z0)FY
Cok = B FycQuEy ExZyExEy QrFy,c —BFy. 24 Qr ET By F,

In deriving the above expressions, without loss of generality, we hgve ~ ¥% = ”If{B[‘T
chosen the weighing matricég, such thatR, = V. Itis usually hard ap = | JellxJy |l

to find a positive-definit€) that minimizedI;?,. Hence, we will find
a suboptimal solution as follows. We shall boufigl, by AI for some Step 3. Now update{Yi, Zi, Tlx, 35} 10 {Yis1, Zos1) et dpsa} as fol
A > 0. The choice of\I will become clear in the sequel. Then we will| jows: ' :

find a lower bound foC: , + AI, which occurs at the lower bound of

C1.x. After some considerable algebra, we can show that for Yit1 = FroViFy .+ padrNpNy + GeWieGL + il
_ Z = FpoZiFl, — FrQuHIV 'HLQrFT
T 5—1 k+1 k,clkly, k,cWkil Vi Yk,
Qropt = (Yo —2Zx) — (Yo — Zx)Hy R. Hi,(Yi — Zi) ¢ 1 - ¢
+Fy, (Y — Zx)H, V. HiQrFy .
andR. , = Vi + H,.(Yx — Zx)HY, we have +Fr,cQuHL Vi Hi (Yo — Zi) Fy .
2 —FreQrHL VT Hy (Y — Zi)HE ViV HeQuFyL
GCM 8 Clyk ?
=0 and >0 (59) +w2] I
Qk Qk = - kv T ~ ~T N NEA
. N . . g1 = Frcllply .+ GeSkGy + pabrp NNy,
That is,Qx,opt MinimizesCy k. It can be seen thay. .+ is positive i1 =  Fyndk + Kpue

definite and hence guarantees a unigue solution to the problem (21).
Now note thafl}?, is quadratic in the variabl@ and hence its value,
for any arbitraryQy, is proportional to|Qr — Qx,opt||F, Where||.||[r  Table 3: A second regularized robust filter for stochastic uncer-
denotes the Frobenius norm of the argument. Also note that the setaifities.




TABLE IV
ERROR VARIANCE WITH POLYTOPIC UNCERTAINTIES INFY.

Filters error variance
Proposed filter 22.8dB
Regularized robust filter of [11] 26.9dB
Guaranteed-cost filter [2] 30dB
Set-valued filter [3] 34.47dB
Kalman filter with nominal modelj] ~ 31.18dB

TABLE V
ERROR VARIANCE WITH STOCHASTIC UNCERTAINTIES INF}, .

Filters error variance
Proposed filter from table 2 21.85dB
Proposed filter from table 3 21.20dB
Regularized robust filter of [11] 22.68dB
Guaranteed-cost filter [2] 25.3dB
Set-valued filter [3] 25.9dB
Kalman filter with nominal modelj 39.5dB

Now with
VI. CONCLUSION
Yirr = el + Y (61) In this paper we developed two regularized robust filters for state-
Zein = Zpaa+yYrl—1 (62) space estimation. The design procedure is through the solution of a
. _ regularized weighted recursive least squares problem and it enforces
Tk is an upper bound dfl;41. This is because minimum state error variance. The proposed filters outperform earlier
robust designs and are suitable for on-line/real-time filtering applica-

2 . . . . .
Yl I+ B) S0 (63) tions since they do not require existence conditions.

et~ Tler = ((1+ BT I

We will now in fact choosey;, such thatsy, — J, Tk JE > 0 for Ty,

satisfying [1]

[2]

T = Froot,eToo1 Fy 1o + Groo1Sk-1Gh_1 + padu—1Ne- 1N g
(64)

Note thata;, chosen as explained above implies thatsatisfies (50). "

We now state the filter :

[5]

Ty = Fprlrjp—1 + Kpryx (65) -

whereF;,  and K,  are defined in terms dp;, as 7]
Fpr = Froll — BQLEL By — QuH Ry 'Hy)  (66) ™

Kpr = Fr.QuHR' (67) ©

[10]
andQy, is determined in terms df;, and Z, at everyk as explained

before. The designed filter is shown in Table 3. (11]
[12]
V. SIMULATIONS (13]

To illustrate the operation of the filter developed for deterministig4]
uncertainties, we choose an implementation of o2levith £, =

. . 15
[[12 .12}, andM; = 1 for all k. The uncertain state matricds; sl

are assumed to lie inside the convex polytope [16]
[17]

_(.9802 .0196 46
= ( 0 5802+ 6) ©8) g

with 6| < 0.4982 The uncertainties in the output matricEs are de-
termined byM;, = 1, Ex, = [4 .4] andG) = [—6 1]. Table 2 shows

REFERENCES

T. Kailath, A. H. Sayed, and B. Hassiliinear EstimationPrentice-Hall, NJ, 2000.

I. R. Petersen and A. V. SavkiRobust Kalman Filtering for Signals and Systems with Large Uncer-
tainties Birkhauser, Boston, 1999.

A. V. Savkin and I. R. Petersen. Robust state estimation and model validation for discrete time
uncertain systems with a deterministic description of noise and uncertaiftiesnatica vol. 34,

no. 2, pp 271-274, 1998.

L. Xie, Y. C. Soh, and C. E. de Souza. Robust Kalman filtering for uncertain discrete-time systems.
|EEE Trans. Automat. Contwol. 39, no. 6, pp. 1310-1314, 1994.

P. Bolzern, P. Colaneri, and G. De Nicolao. Optimal design of robust predictors for linear discrete-
time systemsSystems & Control Lettersol. 26, pp. 25-31, 1995.

M. Fu, C. E. de Souza and Z. Luo, Finite horizon robust kalman filter de§igrc. IEEE Conf.
Decision Contral pp 4555-4560, Phoenix, AZ, 1999.

Y. Theodor and U. Shaked, Robust discrete time minimum variance filtdiifige Trans. Signal
Processingvol. 44, pp 181-189, Feb. 1996.

F. Yang, Z. Wang and Y.S. Hung. Robust Kalman filtering for discrete time-varying uncertain systems
with multiplicative noiseslEEE Trans. Automat. Contwol. 47, no. 7, pp. 1179-1184, 2002.

D. P. Bertsekas and I. B. Rhodes. Recursive state estimation for a set-membership description of
uncertaintylEEE Trans. Automat. Confwol. 16, no. 2, pp. 117-128, 1971.

P. P. Khargonekar and K. M. Nagpal. Filtering and smoothing iftap, setting.|EEE Transactions

on Automatic Contrglvol 36, pp. 151-166, 1991.

A. H. Sayed. A framework for state space estimation with uncertain mote&E Trans. Au-
tomat. Contr, vol. 46, no. 7, pp. 998-1013, July 2001.

A. H. Sayed, V. H. Nascimento, and F. A. M. Cipparrone. A regularized robust design criterion for
uncertain dataSIAM J. Matrix Anal. App).vol. 23, no. 4 pp 1120-1142, 2002.

A. Garulli, A. Vicino, and G. Zappa. Conditional central algorithms for worst case set-membership
identification and filteringlEEE Trans. Automat. Contwol. 45, no. 1, pp. 14-23, Jan. 2000.

J.C. Geromel. Optimal linear filtering under parameter uncertdEBBE Trans. Signal Processing.

vol. 47, no. 1, Jan. 1999.

A. H. Sayed, V. H. Nascimento, and S. Chandrasekaran. Estimation and control with bounded data
uncertaintiesLinear Algebra and Its Applicationsol. 284, pp. 259-306, Nov. 1998.

A. H. Sayed and H. Chen, A uniqueness result concerning a robust regularized least-squares solution,
Systems and Control Lettersol. 46, no. 5, pp 361-369, Aug. 2002.

S. Boyd, L. El Ghaoui, E. Feron and V. Balakrishn&amear Matrix Inequalities in System and
Control Theory SIAM Studies in Applied Mathematics, 1994.

A. E. Bryson and Y.-C. HoApplied Optimal Control: Optimization, Estimation, and ContfTaylor

& Francis, revised printing, 1975.

the average squared state-error values (averaged over 50 experiments)

for the Kalman filter, the proposed filter, the set-valued estimation filter
[3], the guaranteed cost filter [2] and the filter of [11]. To illustrate the
filter developed for stochastic uncertainties, we choose an implementa-
tion of order2 with £, = [.8 .8], M) = 1 for all k. The uncertain
state matrice$}, are assumed to be
9802+ A 4196 + A
Ei = < A 8802 + A) (69)

with |A| < 0.4982. Table 3 shows the average squared state-error
values in this case.



