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Regularized Robust Estimators for Time Varying Uncertain
Discrete-Time Systems

Ananth Subramanian and Ali H. Sayed

Abstract— This paper addresses the issue of robust filtering for time varying un-
certain discrete time systems. The proposed robust filters are based on a regularized
least-squares formulation and guarantee minimum state error variances. Simulation
results indicate their superior performance over other robust filter designs.
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I. I NTRODUCTION

The Kalman filter is the optimal linear least-mean-squares estimator
for systems that are described by linear state-space Markovian models
[1]. However, when the model is not accurately known, the perfor-
mance of the filter can deteriorate appreciably. This filter sensitivity to
modeling errors has led to several works in the literature on the devel-
opment of robust state-space filters; robust in the sense that they attempt
to limit, in certain ways, the effect of model uncertainties on the overall
filter performance. Some of the well known approaches to state-space
estimation in this regard areH∞ filtering, mixedH2/H∞ filtering,
set-valued estimation, guaranteed-cost designs and minimum variance
filtering (see [2]-[11]). In [11], a robust filter design framework was
proposed that performs regularization as opposed to de-regularization.
The design in [11] involved choosing certain Ricatti variables so as to
enforce a local optimality and robustness property. In this paper, we
pursue the design of such regularized robust filters and consider two
general classes of uncertain state-space models. We consider uncer-
tain model descriptions that involve norm bounded uncertainties for
the output matrices, and stochastic and polytopic uncertainties for the
state matrices; both descriptions are common in applications. For each
class, we shall design robust filters that bound the state error covariance
matrix globally. The robustness criterion used is different from prior
robust designs (e.g.,H∞, guaranteed-cost or set-valued estimation) in
that, it is based on robustregularization. In this way, the resulting filters
are well suited for online/real-time filtering applications involving both
time-invariant and time-variant models. Simulation results are included
to illustrate the superior performance of the proposed robust filters over
other robust designs.

II. L EAST-SQUARES WITH UNCERTAINTIES

Let J(x) = xT Qx + R(x) denote a cost function with

R(x) =

�
(A+ δA)x− (b+ δb)

�T

W

�
(A+ δA)x− (b+ δb)

�
(1)

whereδA denotes anN × n perturbation toA, δb denotes anN × 1
perturbation tob, and{δA, δb} are assumed to satisfy a model of the
form �

δA δb
�

= H∆
�

Ea Eb

�
(2)

where∆ is an arbitrary contraction,‖∆‖ ≤ 1, and{H, Ea, Eb} are
known quantities of appropriate dimensions. Consider then the con-
strained two player game problem

x̂ = arg min
x

max
{δA,δb}

J(x) (3)

The authors are with the Department of Electrical Engineering, University of California at Los Angeles,
Box 951594, Los Angeles, CA 90095-1594.

E-mail: {msananth, sayed}@ee.ucla.edu.

Supported by NSF grant ECS-9820765 and CCR-0208573.

subject to (2). The following result is proven in [12].

Theorem 1:The problem (2)–(3) has a unique solutionx̂ that is
given by

x̂ =
h bQ + A

TcWA
i−1 h

A
TcWb + bβE

T
a Eb

i
(4)

where bQ = Q + bβET
a Ea (5)cW = W + WH(bβI −HT WH)†HT W (6)

and the scalarbβ is determined from the optimizationbβ = arg min
β≥‖HT WH‖

G(β) (7)

where the functionG(β) is defined as follows:

G(β)=xT (β)Qx(β) + β‖Eax(β)− Eb‖2

+ [Ax(β)− b]T W (β)[Ax(β)− b]
(8)

with

W (β) = W + WH
�
βI −H

T
WH

�†
H

T
W

Q(β) = Q + βE
T
a Ea

and

x(β)=

�
Q(β) + A

T
W (β)A

�−1 h
A

T
W (β)b + βE

T
a Eb

i
(9)

[The notationX† denotes the pseudo-inverse ofX.]
♦

It was shown in [12], [16] that the functionG(β) has a unique global
minimum (and no local minima) over the intervalβ ≥ ‖HT WH‖,
which means that the determination ofbβ can be pursued by employ-
ing standard search procedures without worrying about convergence to
undesired local minima. It was further argued in [11] that a good ap-
proximation forβ̂ is to choose it aŝβ = (1+α)βl for someα > 0 and
whereβl = ‖HT WH‖.

III. T HE STATE SPACE MODELS

We now use Thm. 1 to design two robust filters. Each filter will be
applicable to a particular class of model uncertainties. Thus consider
ann−dimensional state-space model of the form:

xk+1 = Fkxk + Gkwk (10)

yk = (Hk + ∆Hk)xk + vk, k ≥ 0 (11)

where{wk, vk} are uncorrelated white zero-mean random processes
with variances

Ewkw∗k = Wk, Evkv∗k = Vk

and x0 is a zero-mean random variable that is uncorrelated with
{wk, vk} for all k. The uncertainties∆Hk are modelled as

∆Hk = Mk∆kEk (12)
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whereMk andEk are known matrices, while∆k is an arbitrary con-
traction,∆T

k ∆k ≤ I.

We shall consider two types of uncertainty descriptions for the state
matricesFk: one is in terms of polytopic uncertainties and the other
is in terms of norm bounded stochastic uncertainties. In the first case,
we assume thatFk lies inside a convex bounded polyhedral domainKk

described bym vertices as follows:

Kk =

(
Fk =

i=mX
i=1

αi,kFi,k, αi,k ≥ 0,

i=mX
i=1

αi,k = 1

)
(13)

Observe thatKk is allowed to vary withk. In the second case, we
assume thatFk is described by

Fk = Fk,c + ∆Fk, ∆Fk = Nk∆̄kJk (14)

for some knownFk,c and where∆̄k is a random matrix whose entries
are zero mean and uncorrelated with each other, and such that

E∆̄k∆̄∗
k ≤ ρ∆̄I (15)

for some knownρ∆̄.

IV. ROBUST STATE SPACE FILTERING

When uncertainties are not present in the model (10)–(11), it is
known that the optimal linear estimator for the state is the Kalman filter
[18]. This filter admits a deterministic interpretation as the solution to
a regularized least-squares problem as follows. Let1

x̂k|k−1
∆
= an estimate ofxk given{y0, y1, . . . , yk−1}

x̂k|k
∆
= an estimate ofxk given{y0, y1, . . . , yk−1, yk}

Given the predicted estimatêxk|k−1 and an observationyk, the filtered
estimatêxk|k that is computed by the Kalman filter is the solution of

min
x

h
‖x− x̂k|k−1‖2P−1

k
+ ‖yk −Hkx‖2

R−1
k

i
(16)

wherePk andRk are the state error covariance and the measurement
noise covariance matrices, respectively. When uncertainties are present
in {Hk, Fk}, we formulate a robust version of (16) by solving instead
the min-max problem :

min
x

max
δHk,δFk

�
‖x− x̂k|k−1‖2P−1

k

+ ‖yk − (Hk + δHk)x‖2
R
−1
k

�
(17)

This formulation was proposed in [11]. Compared with other robust
designs, it has the advantage of performing regularization as opposed
to de-regularization, a property that is useful for on-line/real-time op-
eration since the resulting filter will not require existence conditions.
In [11], the weighing matricesPk in (17) were propagated through
a Ricatti recursion that enforces a local optimality criterion. In our
first filter below, we shall instead determinePk so as to minimize the
state error covariance matrixglobally. We do so by showing how to re-
parametrizePk andRk in terms of a single parameterQk, over which
the global minimization of the error covariance matrix reduces to a lin-
ear convex problem. In our second filter, we shall derive a more effi-
cient procedure for updatingPk. The procedure does not require solv-
ing a linear convex problem at each iteration and has the same compu-
tational complexity as the Kalman filter.

1When uncertainties are not present, the qualification “estimate” refers to the linear-least-mean-squares
estimate.

A. Polytopic Uncertainties

We consider first the case of polytopic uncertainties inFk as in (13).
Our objective is to design a robust linear estimator for the state variable
xk of the form

x̂k|k = Fp,kx̂k|k−1 + Kp,kyk, k ≥ 0 (18)

x̂k+1|k = Fk,cx̂k|k (19)

for some matricesFp,k andKp,k to be determined in order to minimize
the worst case error variance of the state for all uncertainties, and where
Fk,c denotes the centroid of the polytopeKk:

Fk,c =
1

m

i=mX
i=1

Fi,k (20)

Assume first that theFk are fixed; we will incorporate the uncertainties
in Fk soon. With uncertainties in the output matricesHk alone, prob-
lem (17) becomes

min
x

max
δHk

�
‖x− x̂k|k−1‖2P−1

k

+ ‖yk − (Hk + δHk)x‖2
R
−1
k

�
(21)

which can be written more compactly in the form (1)–(3) with the iden-
tifications:

x ←− {xk − x̂k|k−1}, b ←− yk −Hkx̂k|k−1

δA ←− Mk∆kEk

δb ←− −Mk∆kEkx̂k|k−1, Q ←− P
−1
k

W ←− R
−1
k , H ←− Mk, Ea ←− Ek

Eb ←− −Ekx̂k|k−1, ∆ ←− ∆k, A ←− Hk

From Thm. 1, the solution̂xk|k of (21) is given by

x̂k|k = x̂k|k−1+(P
−1
k + β̂E

T
k Ek + H

T
k R̂

−1
k Hk)

−1

{HT
k R̂

−1
k (yk −Hkx̂k|k−1)− β̂E

T
k Ekx̂k|k−1}

(22)

where
R̂−1

k = (Rk − β̂−1MkMT
k )−1 (23)

If we now introduce the matrix

Qk
∆
= (P−1

k + β̂ET
k Ek + HT

k R̂−1
k Hk)−1 (24)

then the expression for̂xk|k becomes

x̂k|k =(I − β̂QkET
k Ek −QkHT

k R̂−1
k Hk)x̂k|k−1

+ QkHT
k R̂−1

k yk

(25)

in terms of the parameterQk. Noting thatwk is a zero-mean white
random process, we let the following be an estimate forxk+1 given the
measurementyk:

x̂k+1|k
∆
= Fk,cx̂k|k (26)

We then get
x̂k+1|k = Fp,kx̂k|k−1 + Kp,kyk (27)

whereFp,k andKp,k are defined in terms ofQk as

Fp,k = Fk,c(I − β̂QkET
k Ek −QkHT

k R̂−1
k Hk) (28)

Kp,k = Fk,cQkHT
k R̂−1

k (29)
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Denotingx̃k = xk − x̂k|k−1, we define the extended weight vector

ηk
∆
=

�
xk

x̃k

�
(30)

Thenηk satisfies
ηk+1 = F̄kηk + Ḡkuk (31)

where

uk =

�
wk

vk

�
, Ḡ =

�
G 0
G −Kp,k

�
(32)

F̄k =

�
Fk 0

Fk − Fp,k −Kp,kHk Fp,k

�
(33)

and the covariance matrix ofηk satisfies

Πk+1 = F̄kΠkF̄ T
k + ḠkSkḠT

k (34)

where

Sk =

�
Wk 0
0 Vk

�
(35)

andΠ0 is the covariance matrix ofη0. Now observe that the expres-
sions for{Fp,k, Kp,k} are parametrized in terms of the single param-
eterQk. We shall then chooseQk so as to minimize the covariance
of ηk. In this way, the resulting filter will satisfy the robustness condi-
tion (21), in addition to minimizing the state error covariance. This is
achieved as follows. First note thatQk in (24) is to problem (21) as the
matrix bQ + ATcWA in (4) is to problem (1)–(3). Therefore,Qk must
be positive definite so that thêxk|k is guaranteed to be the minimum of
(21). Then we shall chooseQk > 0 so as to minimizeΠk+1 of (34).
This can be obtained by solving

min
Qk > 0

Trace(Πk+1) (36)

subject to the inequality

Πk+1 ≥ F̄kΠkF̄ T
k + ḠkSkḠT

k (37)

or, equivalently,0@ −Πk+1 F̄kΠk ḠkS
1/2
k

ΠkF̄ T
k −Πk 0

S
T/2
k ḠT

k 0 −I

1A ≤ 0 (38)

In order to incorporate the polytopic uncertainties in theFk, as defined
by the setsKk in (13), we need to solve the above optimization prob-
lem withFk taking values at them vertices of the convex polytopeKk,
i.e., from the set{F1,k, F2,k, ......, Fm,k}. Since the inequality (38) is
affine inFk, theQk thus found will ensure minimum error covariance
Πk over all possibleFk in Kk. Therefore, the time varying robust fil-
ter is given by (65)–(67), whereQk is the positive definite solution of
(51)–(38) withFk taking values on the vertices of the convex polytope
Kk, and initializingΠ0 = diag{Po, εI} for some positive definitePo.
Note that there always exists a solution to (51)–(38). This is because,
at every time instantk, Qk = εI for ε > 0 is a feasible solution. The
filter is summarized in Table 1.

Infinite horizon case :In this paper, by the notion of stability in the in-
finite horizon case, we mean that the variables associated with the filter
are bounded for allk. Assume‖Fk,c‖ < 1 and chooseQk to satisfy
(51)–(38) as well as‖F̄k‖ < 1. This additional constraint is easily
represented in terms of a linear matrix inequality in the variableQk as�

I F̄ T
k

F̄k I

�
> 0 (39)

This condition guarantees thatΠk will remain bounded for allk.

Assumed uncertain model. Eqs. (10)–(13).

Initial conditions: x̂0 = 0, Π0 = diag{Po, εI}.
Step 1. If Mk = 0, then setbβk = 0. Otherwise, set instead

β̂ = (1 + α)βl,k whereβl,k = ‖MT
k R−1

k Mk‖.

Step 2. UsingΠk, compute{Qk, Πk+1} by solving

min
Qk > 0

Trace(Πk+1)

subject to the inequality0@ −Πk+1 F̄kΠk ḠkS
1/2
k

ΠkF̄ T
k −Πk 0

S
T/2
k ḠT

k 0 −I

1A ≤ 0

where{F̄k, Ḡk, Sk} are defined by (32),(33) and (35).
Step 3. Updatex̂k to x̂k+1 as

x̂k+1 = Fp,kx̂k + Kp,kyk

where

Fp,k = Fk,c(I − β̂QkET
k Ek −QkHT

k R̂−1
k Hk)

Kp,k = Fk,cQkHT
k R̂−1

k

R̂−1
k = (Rk − β̂−1MkMT

k )−1

with Fk,c from (20).
Table 1: Regularized robust filter for polytopic uncertainties.

B. Stochastic Uncertainties

We now consider the case of norm bounded stochastic uncertainties in
Fk as in (14). We derive two filters; one through convex optimization
method and the other through a suboptimal ricatti equation method. We
first look at a filter that is derived in terms of convex optimization.

B.1 A robust filter

Here again, our objective is to design a robust linear estimator for the
state variablexk of the form

x̂k|k = Fp,kx̂k|k−1 + Kp,kyk, k ≥ 0 (40)

x̂k+1|k = Fk,cx̂k|k (41)

for some matricesFp,k andKp,k to be determined in order to minimize
the worst case error variance of the state for all uncertainties, and where
Fk,c denotes the nominal state matrix. Proceeding in the same manner
as in the previous section from the robustness condition (21), we know
that the expressions for{Fp,k, Kp,k} will be parametrized in terms of
the parameterQk. We shall then chooseQk so as to minimize the
covariance ofηk. Hereηk satisfies :

ηk+1 = (F̄k,c + N̄k∆̄J̄k)ηk + Ḡkuk (42)
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where

uk =

�
wk

vk

�
(43)

F̄k,c =

�
Fk,c 0

Fk,c − Fp,k −Kp,kHk Fp,k

�
(44)

N̄k =

�
Nk 0
Nk 0

�
(45)

J̄k =

�
Jk 0
0 0

�
(46)

and the covariance matrix ofηk satisfies

Πk+1 = E{(F̄k,c+N̄k∆̄J̄k)Πk(F̄k,c+N̄k∆̄J̄k)T }+ḠkSkḠT
k (47)

whereE denotes the expectation operator and

Sk =

�
Wk 0
0 Vk

�
(48)

Let Π̌k satisfy

Π̌k+1 = F̄k,cΠ̌kF̄ T
k,c + ḠkSkḠT

k + ρ∆̄α̂kN̄kN̄T
k (49)

and choosêαk such that̂αk − J̄kΠ̌kJ̄T
k > 0. Then

α̂kI − J̄kΠkJ̄T
k > 0 (50)

and

Πk+1 ≤ F̄k,cΠkF̄ T
k,c + ḠkSkḠT

k + ρ∆̄α̂kN̄kN̄T
k

This suggests that we can chooseQk by constructing a sequence of
matricesΠ̂k so as to solve:

min
Qk > 0

Trace(Π̂k+1) (51)

subject to the inequality

Π̂k+1 ≥ F̄kΠ̂kF̄ T
k + ḠkSkḠT

k + ρ∆̄α̂kN̄kN̄T
k (52)

or, equivalently,0B@−Π̂k+1 + ρ∆̄α̂kN̄kN̄T
k F̄kΠ̂k ḠkS

1/2
k

Π̂kF̄ T
k −Π̂k 0

S
T/2
k ḠT

k 0 −I

1CA ≤ 0 (53)

Note thatΠk ≤ Π̂k for everyk. The filter hence derived is summarized
in Table 2.

Infinite horizon case :We now describe some sufficient conditions
for infinite horizon stability (i.e., for the matrices{Π̂k, Π̌k} to remain
bounded). Assume that‖Fk,c‖ < 1 and chooseQk to satisfy (51)–(53)
as well as‖F̄k,c‖ < 1. This additional constraint is easily represented
in terms of a linear matrix inequality in the variableQk as�

I F̄ T
k,c

F̄k,c I

�
> 0 (54)

Let a fixedα̂ be chosen in the following way. Consider the recursion

Π̌k+1 = F̄k,cΠ̌kF̄ T
k,c + ḠkSḠT

k + ρ∆̄α̂kN̄kN̄T
k

Then

‖Π̌k+1‖ ≤ ‖F̄k,c‖2‖Π̌k‖+ ‖ḠkSḠT
k ‖+ ρ∆̄α̂k‖N̄kN̄T

k ‖

Let β = ‖F̄k,c‖2 < 1, ‖N̄kN̄T
k ‖ < γ and sinceQk lies inside a

bounded setC, assume‖ḠkSkḠT
k ‖ < ζ. Then

‖Π̌k+1‖ ≤ βk‖Π̌0‖+

i=k−1X
i=0

βk−1−iζ +

i=k−1X
i=0

βk−1−iρ∆̄α̂kγ

or

‖Π̌k+1‖ ≤ ‖Π̌0‖+
1

1− β
(ζ + ρ∆̄α̂kγ)

We then have

‖J̄k+1Π̌k+1J̄
T
k+1‖ ≤ ‖Π̌k+1‖‖J̄k+1‖2

≤ χ(‖Π̌0‖+
1

1− β
(ζ + ρ∆̄α̂kγ))

where‖J̄k+1‖2 ≤ χ. If α̂k = α̂ can be chosen for eachk such that

α̂ > χ

�
‖Π̌0‖+

1

1− β
(ζ + ρ∆̄α̂γ)

�
(55)

we see that‖J̄k+1Π̌k+1J̄
T
k+1‖ is bounded for allk. A fixed α̂ chosen

according to condition (55) along with (54) guarantee thatΠ̂k andΠ̌k

will remain bounded for allk.

Assumed uncertain model. Eqs. (14).

Initial conditions: x̂0 = 0, Π̂0 = Π̌0 = diag{Po, εI}.

Step 1. If Mk = 0, then setbβk = 0. Otherwise, set instead̂β =

(1 + α)βl,k whereβl,k = ‖MT
k R−1

k Mk‖. Chooseα̂k such that
α̂k − J̄kΠ̌kJ̄T

k > 0 for Π̌k satisfying

Π̌k+1 = F̄k,cΠ̌kF̄ T
k,c + ḠkSkḠT

k + ρ∆̄α̂kN̄kN̄T
k

Step 2. UsingΠ̂k andα̂k compute,{Qk, Π̂k+1} by solving

min
Qk > 0

Trace(Π̂k+1)

subject to the inequality0B@−Π̂k+1 + ρ∆̄α̂kN̄kN̄T
k F̄kΠ̂k ḠkS

1/2
k

Π̂kF̄ T
k −Π̂k 0

S
T/2
k ḠT

k 0 −I

1CA ≤ 0

where{F̄k, Ḡk, Sk} are defined by (32),(33) and (35).
Step 3. Updatex̂k to x̂k+1 as

x̂k+1 = Fp,kx̂k + Kp,kyk

where

Fp,k = Fk,c(I − β̂QkET
k Ek −QkHT

k R̂−1
k Hk)

Kp,k = Fk,cQkHT
k R̂−1

k

R̂−1
k = (Rk − β̂−1MkMT

k )−1

Table 2: A regularized robust filter for stochastic uncertainties.

B.2 Another Robust Filter

Consider again equations (47)–(51). We will now show how to gener-
ate anewsequence of matrices̃Πk andΠ̂k such thatΠk ≤ Π̃k ≤ Π̂k.
This construction will enable us to avoid the solution of the optimiza-
tion problem (51)-(53) at each iteration thus reducing the computational
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complexity. At every iteration we would find a suboptimalQk that min-
imizes the bound̃Πk of the error covariance matrixΠk. At time instant
k + 1, assuming we haveΠk ≤ Π̃k ≤ Π̂k, then the state error covari-
ance is bounded by the(2, 2) block element of the matrix̃Πk+1 defined
by

Π̃k+1 = F̄k,cΠ̂kF̄ T
k,c + ḠkSkḠT

k + ρ∆̄α̂kN̄kN̄T
k

The sequence of matriceŝΠk are restricted to have a structure of the
form:

Π̂k =

�
Yk Yk − Zk

Yk − Zk Yk − Zk

�
(56)

and are generated as will be explained in the sequel. Moreover, with at
time instantk, with Π̂k given as in (56) we have that

Π̃k+1 =

�
Ỹk+1 X̃k+1

X̃T
k+1 Ỹk+1 − Z̃k+1

�
(57)

where

Ỹk+1 = Fk,cYkF T
k,c + ρ∆̄α̂kNkNT

k + GkWkGT
k

Z̃k+1 = Fk,cZkF T
k,c − Fk,cQkHT

k V −1
k HkQkF T

k,c

+Fk,c(Yk − Zk)HT
k V −1

k HkQkF T
k,c

+Fk,cQkHT
k V −1

k Hk(Yk − Zk)F T
k,c

−β2Fk,cQkET
k EkZkET

k EkQkFk,c

−Fk,cQkHT
k V −1

k Hk(Yk − Zk)HT
k V −1

k HkQkF T
k,c

X̃k+1 = βFk,cYkET
k EkQkF T

k,c + Fk,c(Yk − Zk)F T
p,k

+ρ∆̄α̂kNkNT
k + GkWkGT

k

Also, the(2, 2) block element of̃Πk+1 is given by

Π̃2,2
k+1 = C1,k + C2,k (58)

where

C1,k = Fk,c(Yk − Zk)F T
k,c + ρ∆̄α̂kNkNT

k

+GkWkGT
k + Fk,cQkHT

k V −1
k HkQkF T

k,c

−Fk,c(Yk − Zk)HT
k V −1

k HkQkF T
k,c

−Fk,cQkHT
k V −1

k Hk(Yk − Zk)F T
k,c

+Fk,cQkHT
k V −1

k Hk(Yk − Zk)HT
k V −1

k HkQkF T
k,c

C2,k = β2Fk,cQkET
k EkZkEkET

k QkFk,c

In deriving the above expressions, without loss of generality, we have
chosen the weighing matricesRk such thatR̂k = Vk. It is usually hard
to find a positive-definiteQk that minimizes̃Π2,2

k+1. Hence, we will find
a suboptimal solution as follows. We shall boundC2,k by λI for some
λ > 0. The choice ofλI will become clear in the sequel. Then we will
find a lower bound forC1,k + λI, which occurs at the lower bound of
C1,k. After some considerable algebra, we can show that for

Qk,opt = (Yk − Zk)− (Yk − Zk)HT
k R̄−1

e,kHk(Yk − Zk)

andR̄e,k = Vk + Hk(Yk − Zk)HT
k , we have

∂C1,k

Qk
= 0 and

∂2C1,k

Qk
> 0 (59)

That is,Qk,opt minimizesC1,k. It can be seen thatQk,opt is positive
definite and hence guarantees a unique solution to the problem (21).
Now note that̃Π2,2

k+1 is quadratic in the variableQk and hence its value,
for any arbitraryQk, is proportional to‖Qk − Qk,opt‖F , where‖.‖F

denotes the Frobenius norm of the argument. Also note that the set of

all Qk that guaranteeC2,k < λI is a convex bounded setC about the
origin in the normed vector space of all matrices of dimensionn × n.
If Qk,opt lies insideC, we chooseQk asQk,opt. Otherwise,Qk is
chosen as a matrix that is closest toQk,opt in the Frobenius norm and
simultaneously lying inside the setC. Now we will derive an upper
bound forΠ̃k+1 in the form (which is compatible with the form we
started with in (56)):

Π̂k+1 =

�
Yk+1 Yk+1 − Zk+1

Yk+1 − Zk+1 Yk+1 − Ẑk+1

�
(60)

for some matricesYk+1 andZk+1. Chooseψk as the maximum singu-
lar value ofI + B where

B = Fk,cQkHT
k V −1

k Hk(Yk − Zk)HT
k V −1

k HkQkF T
k,c

+β2Fk,cQkET
k EkZkET

k EkQkFk,c

+Fk,cQkHT
k V −1

k HkQkF T
k,c

−Fk,cQkHT
k V −1

k Hk(Yk − Zk)F T
k,c

−βFk,cZkQkET
k EkF T

k,c

Assumed uncertain model. Eqs. (10)–(13) and (14)–(15).
Initial conditions: x̂0 = 0, Y0 = I, Z0 = µI ,

Π0 =

�
Y0 Y0 − Z0

Y0 − Z0 Y0 − Z0

�
Step 1a. Using{Vk, Hk, Yk, Zk} compute{Re,k, Qk}:

Re,k = Vk + Hk(Yk − Zk)H
T
k

Qk,opt = (Yk − Zk)− (Yk − Zk)H
T
k R̄

−1
e,kHk(Yk − Zk)

Step 1b. If Mk = 0, then setbβk = 0. Otherwise, setbβk = (1 + α)βl,k, α > 0.
Determine the largestQk = ξQk,opt for some positiveξ such thatC2,k < λI for
some smallλ > 0.
Step 2. Compute the parameters:

Fp,k = Fk,c(I −QkβE
T
k Ek −QkH

T
k R̂

−1
k Hk)

Kp,k = Fk,cQkH
T
k R̂

−1
k

B = Fk,cQkH
T
k V

−1
k Hk(Yk − Zk)H

T
k V

−1
k HkQkF

T
k,c

+β
2
Fk,cQkE

T
k EkZkE

T
k EkQkFk,c

+Fk,cQkH
T
k V

−1
k HkQkF

T
k,c

−Fk,cQkH
T
k V

−1
k Hk(Yk − Zk)F

T
k,c

−βFk,cZkQkE
T
k EkF

T
k,c

ψk = ‖I + B‖
α̂k = ‖J̄kΠ̌kJ̄

T
k ‖

Step 3. Now update{Yk, Zk, Πk, x̂k} to {Yk+1, Zk+1, Πk+1, x̂k+1} as fol-
lows:

Yk+1 = Fk,cYkF
T
k,c + ρ∆̄α̂kNkN

T
k + GkWkG

T
k + ψ

2
kI

Zk+1 = Fk,cZkF
T
k,c − Fk,cQkH

T
k V

−1
k HkQkF

T
k,c

+Fk,c(Yk − Zk)H
T
k V

−1
k HkQkF

T
k,c

+Fk,cQkH
T
k V

−1
k Hk(Yk − Zk)F

T
k,c

−Fk,cQkH
T
k V

−1
k Hk(Yk − Zk)H

T
k V

−1
k HkQkF

T
k,c

+ψ
2
kI − I

Π̌k+1 = F̄k,cΠ̌kF̄
T
k,c + ḠkSkḠ

T
k + ρ∆̄α̂kN̄kN̄

T
k

x̂k+1 = Fp,kx̂k + Kp,kyk

Table 3: A second regularized robust filter for stochastic uncer-
tainties.
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TABLE IV

ERROR VARIANCE WITH POLYTOPIC UNCERTAINTIES INFk .

Filters error variance
Proposed filter 22.8dB

Regularized robust filter of [11] 26.9dB
Guaranteed-cost filter [2] 30dB

Set-valued filter [3] 34.47dB
Kalman filter with nominal model 31.18dB

Now with

Yk+1 = ψ2
kI + Ỹk+1 (61)

Zk+1 = Z̃k+1 + ψ2
kI − I (62)

Π̂k+1 is an upper bound of̃Πk+1. This is because

Π̂k+1 − Π̃k+1 =

�
ψ2

kI I + B
(I + B)T I

�
> 0 (63)

We will now in fact choosêαk such thatα̂k − J̄kTkJ̄T
k > 0 for Tk

satisfying

Tk = F̄k−1,cTk−1F̄
T
k−1,c + Ḡk−1Sk−1Ḡ

T
k−1 + ρ∆̄α̂k−1N̄k−1N̄

T
k−1

(64)
Note thatα̂k chosen as explained above implies thatα̂k satisfies (50).
We now state the filter :

x̂k+1|k = Fp,kx̂k|k−1 + Kp,kyk (65)

whereFp,k andKp,k are defined in terms ofQk as

Fp,k = Fk,c(I − β̂QkET
k Ek −QkHT

k R̂−1
k Hk) (66)

Kp,k = Fk,cQkHT
k R̂−1

k (67)

andQk is determined in terms ofYk andZk at everyk as explained
before. The designed filter is shown in Table 3.

V. SIMULATIONS

To illustrate the operation of the filter developed for deterministic
uncertainties, we choose an implementation of order2 with Ek =
[.12 .12], andMk = 1 for all k. The uncertain state matricesFk

are assumed to lie inside the convex polytope

Fk =

�
.9802 .0196 + δ

0 .5802 + δ

�
(68)

with |δ| ≤ 0.4982 The uncertainties in the output matricesHk are de-
termined byMk = 1, Ek = [.4 .4] andGk = [−6 1]. Table 2 shows
the average squared state-error values (averaged over 50 experiments)
for the Kalman filter, the proposed filter, the set-valued estimation filter
[3], the guaranteed cost filter [2] and the filter of [11]. To illustrate the
filter developed for stochastic uncertainties, we choose an implementa-
tion of order2 with Ek = [.8 .8], Mk = 1 for all k. The uncertain
state matricesFk are assumed to be

Fk =

�
.9802 + ∆̄ .4196 + ∆̄

∆̄ .8802 + ∆̄

�
(69)

with |∆̄| ≤ 0.4982. Table 3 shows the average squared state-error
values in this case.

TABLE V

ERROR VARIANCE WITH STOCHASTIC UNCERTAINTIES INFk .

Filters error variance
Proposed filter from table 2 21.85dB
Proposed filter from table 3 21.20dB

Regularized robust filter of [11] 22.68dB
Guaranteed-cost filter [2] 25.3dB

Set-valued filter [3] 25.9dB
Kalman filter with nominal model 39.5dB

VI. CONCLUSION

In this paper we developed two regularized robust filters for state-
space estimation. The design procedure is through the solution of a
regularized weighted recursive least squares problem and it enforces
minimum state error variance. The proposed filters outperform earlier
robust designs and are suitable for on-line/real-time filtering applica-
tions since they do not require existence conditions.
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