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Abstract— This paper extends a recent time-domain feed-
back analysis of Perceptron learning networks to recurrent
networks and provides a study of the robustness perfor-
mance of the training phase in the presence of uncertain-
ties. In particular, a bound is established on the step-size
parameter in order to guarantee that the training algorithm
will behave as a robust filter in the sense of H>® —theory.
The paper also establishes that the training scheme can be
interpreted in terms of a feedback interconnection that con-
sists of two major blocks: a time-variant lossless (i.e., energy
preserving) feedforward block and a time-variant dynamic
feedback block. The I3 —stability of the feedback structure is
then analyzed by using the small-gain and the mean-value
theorems.

Keywords— Perceptron-learning, recurrent networks, feed-
back structure, convergence speed, robustness, />—stability,
H-filter, small gain theorem, mean-value theorem.

I. INTRODUCTION

Applications of neural networks span a variety of areas
in pattern recognition, filtering, and control. When super-
vised learning is employed, a training phase is always nec-
essary. During this phase, a recursive update procedure is
used to estimate the weight vector of the linear combiner
that "best” fits the given data, The recursive procedure
usually requires that a suitable adaptation gain be chosen
and, in most cases, heuristics and trial-and-error experi-
ences are used to select a step-size value for the training
period. The ”common” practice is to choose small adapta-
tion gains. But the smaller the adaptation gain the slower
the convergence speed. In several cases, especially in large-
scale applications with many weights and many training
patterns, this may require a considerable amount of time
and machine power.

In recent work on the robustness analysis of adaptive
schemes [4], it has been shown how to select the adapta-
tion gain in order to guarantee both 1) a robust perfor-
mance in the presence of noise and modeling uncertainties,
and 2) faster convergence. This was achieved by exploit-
ing an intrinsic feedback structure and by combining tools
from state-space theory, feedback analysis, and small gain
analysis.

In subsequent work [5], it was shown how to extend the
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above results to the case of Perceptron learning, which in-
volves a nonlinear activation function. In particular, modi-
fications to the training algorithm, in terms of selections of
the adaptation gain parameter, were suggested in order to
accelerate the convergence speed during the training phase.
These results are reviewed in the earlier part of this paper,
followed by an extension of the analysis to the recurrent
network case.

Notation. Small boldface letters are used to denote vec-
tors (e.g., u), the letter “T" to denote transposition, and
||x|| to denote the Euclidean norm of a vector x. Also, sub-
scripts are used for time-indexing of vector quantities (e.g.,
u;) and parenthesis for time-indexing of scalar quantities
(e.g., v(7)). All vectors are column vectors except for the
row vectors u;.

II. THE PERCEPTRON

Consider two sets, Sp and 81, of M —dimensional real-
valued row vectors u that are characterized by either prop-
erty A or property B. If the two sets are linearly separa-
ble, then a classification scheme that can be used to decide
whether a given vector u belongs to one class or the other
is to employ a Perceptron device [1], [2], [3].

The Perceptron consists of a linear combiner, whose col-
umn weight vector we denote by w, followed by a nonlin-
earity f[z] (also known as an activation function), as de-
picted in Figure 1. A common choice for f[z] is the sigmoid
function

fole] = ——

g B > 0. (1)

But, more generally, it can be any monotonically increasing
function. The outcome f[z] denotes the likelihood that the
input vector belongs to Sy or Sj.
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Fig. 1. The Perceptron structure.



III. THE PERCEPTRON LEARNING
ALGORITHM

Consider a collection of input vectors {u;} with the cor-
responding (desired) output (or reference) values {y(7)}.
The {y(¢)} are assumed to belong to the range of the acti-
vation function f[], i.e.,

y(@) = fluiw]

This is in agreement with the models and assumptions used

n [7], [6]. In supervised learning, the Perceptron is pre-
sented with the given input-output data {u;,y(7)} and the
objective is to estimate w. The PLA computes recursive
estimates of w (with initial guess w_1):

flugw;_q]]. (3)

For generality, the possibility of noisy perturbations in the
reference signal y(7) is included in our analysis. These can
be due to model mismatching or to measurement noise.
The perturbed references will be denoted by {d(i)} (which
are now the given data instead of {y(¢)}),

d(i) = =y(i) +v(d), (4)

where v(i) denotes the noise term. Correspondingly, the
following general form of recursion (3) is considered:

fluiwi_1]], (5)

where d(7) replaces y(i) and where we have allowed a time-
variant step-size parameter p(z).

The following error quantities are useful for our later
analysis: Ww; = w — w;, €,(1) = w;Ww;_1 = 2(¢) — 2(3), and
ep(i) = u;W;. It then follows from (5) that:

flugwi_q]]. (6)

for some w. (2)

W; =W;_1 + lﬂlzT [y(i) —

fluiw] + v(3)

w; = w1 + p(i)u] [d() —

Wi = Wi 1 — p(i)uy [d() —

Moreover, the following relation holds among {e, (), ,(2), v(é )}nal (weighted) disturbances

) =e 7,'—M ww| —
es(0) = eali) — 75 [fluew]

where fi(i) = 1/||u;]|? (the reciprocal of the input vector

fluswia] +0(@)] , (7)

energy). Consequently, the update recursion (5) can be
rewritten in the equivalent form

wi = w1+ a)u] [ea(d) — ep(i)] (8)
which also implies that the error vector satisfies

u] [eq (i) — ep(i))- 9)

The robustness performance of the update recursion (5)
for model (4) was studied in [5] in a purely deterministic
framework and without assuming prior knowledge of noise
statistics. Choices for the adaptation gains u(i) were sug-
gested in order to guarantee i) a robust behavior and ii)
faster convergence. The robustness property loosely guar-
antees that “small” disturbances would lead to “small” es-
timation errors. That is, it guarantees that the “estimation
error energy” does not exceed the “noise or disturbance en-
ergy”. These facts are reviewed in the next section before
considering the case of recurrent networks.

Wi = W;_1 — [i(7)

I7:ll =1

1= PG I

Fig. 2. A time-variant lossless mapping with gain feedback for the
Perceptron learning algorithm.

IV. A FEEDBACK STRUCTURE
It has been shown in [5] that the following equality holds
for all possible choices of u():
(¥ | + 7(3)eq (i)
[Wi1l? + B(i)e3(7)

=1, (10)

which establishes the existence of a lossless mapping
T: from the signals {W;_1,/[i(i)ep(i)} to the signals
{Wi, v/ E(7)ea(d) }-

If we further apply the mean-value theorem to the acti-
vation function f(z), and write

flusw] - f'[n(@)]ea (),

for some point 7(i) along the segment connecting u;w and
u;w;_1, we obtain from expression (7) that

0 u(i)] _

fluiwi_1] =

fi? (i)ea i) -

nof=
[
\_/

—[

This relation shows that the overall mapping from the orig-
a(-)v(:) to the resulting a
priori (weighted) estimation errors \/fi(-)eq(-) can be ex-
pressed in terms of the feedback structure shown in Fig-
ure 2.

Define y(N) = maxo<i<n p(i)/A(i) and
AN) 2 max 1= S
Define also the column vectors
ely = [ea(0),ea(1),..rea(N)],
vy = [v(0),v(1),...,u(N)], (11)
and the diagonal matrices
My £ diag {u(0),u(1),...,x(N)},  (12)
My = diag {a(0),a(1),...,&(N)},  (13)
Fym) 2 diag (/'O f/I(N]}.  (14)

We write F'y (1) with a vector argument 7 to indicate the
dependence on the set {n(i)}Y,



It is easy to see that, due to the diagonal structure of
My, My, and F (1), the 2—induced norms of the matri-
ces [I — MNM;VIFIN(U)] and MyMy' are equal to A(N)
and y(IV), respectively.

Moreover, it can be shown that if A(N) < 1 then [5]

- —=—1 —1
1 [W—1]] + My My |l2,inal Mg vl
IMyeqnll < — .
1—|T-MnyMpy Fy(ml2,ina
This expression establishes that the map from

{W_1,v/B()v(-)} to {\/fi(-)ea(-)} is lo—stable (it maps a
finite energy sequence to another finite energy sequence).
The condition A(N) < 1 is a manifestation of the small
gain theorem [8], and can be seen to be equivalent to re-
quiring that u(7) be chosen such that

0 < p(a) f'[n(3)] < 2/llwil* -
V. OPTIMAL CHOICES OF STEP-SIZES

It can also be argued, by ignoring the measurement noise
v(1), that if () is chosen in the middle of the interval spec-
ified by (15), say popt (1) f'[n(3)] = G(%), then the feedback
loop is disconnected and the convergence speed is faster.
In this case, there will be no energy flowing back into the
lower input of the lossless section.

But 7(7) is still unknown and therefore three suitable
approximations for fi,,¢(i) have been suggested in [5]:

o Choice A: piopt (i) =

]./,8 ln[l/d(t) - ].] +u;w;_g )
- . 7T )
d(i) — fluswii]

where T is used as a threshold value in order to prevent
large step-sizes.

+ Choice B: For (d(i) — 3) (f(uiwi—1) — 3) > 0 we set

o) = 240
o f1A@)] + f'luiwi_1] + €

(15)

£i(3) min (

otherwise piopt (1) = B(2)/ fliax-
« Choice C:

(i)
B[ = fln@))] + e

Hopt (1) = ) (16)

where € is a small positive constant.

VI. RECURRENT NETWORKS

The results of the earlier sections can be extended to the
case of Recurrent Neural Networks (RNN, for short). An
RNN is a dynamic network whose current output is also
a function of earlier output values, in much the same way
as the output of an IIR filter is dependent on the previous
outputs. Figure 3 depicts a block diagram of a recurrent
structure suggested by Narendra [9], [10].

The network consists of two linear combiners with weight
vectors a and b. The upper combiner receives an external
row input vector x; and evaluates the inner product x;b.
The lower combiner receives the state vector of an FIR filter

-
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Fig. 3. Narendra’s Dynamic Network.

and computes its inner product with a. The FIR filter is
fed with the output y(¢) of the network and, hence, its state
vector is given by

yior 2 [ yi-1) y(i—2) yi-M) ],

where M is the order of the filter a.

The weight vector of the network of Figure 3 is defined
by wl' = [ aT bT ]. The objective of a training phase
is to provide the network with a collection of input-output
data, {x;,d(7)}, in order to estimate the unknown vectors
a and b. Here,

d(3) = flxib+yi-1a] +v(i) £ y(i) +v(i).
A recursive gradient-type scheme that can be used for
the training of such a network is the following. Let a;_;
and b;_; denote estimates for a and b at time i — 1, re-
spectively. Let also §(i) denote the corresponding out-
put, viz., §(i) = f[x;a;_1 + Fi—1bi—1] = fluyw;_1], where
Viv o= [96-1) 9G-2) ... gE-M)], w =
[ $i-1 xi |,andwl, =[ al;, bl ].Theestimates
for a and b are recursively evaluated as follows: start with
arbitrary initial conditions for a and b, say an initial weight
vector w_1, and use
wi = wiy + p(i)u] [d@) - fluiwia]]. (17)
This can be regarded as an immediate extension of a
so-called Feintuch algorithm[11] in IIR modeling (where
f(2) = z is linear) to the case of Figure 3, which now in-
cludes a nonlinear activation function f[-]. A discussion in
the IIR case, with linear f[-], can be found in [12]. Define
ea(1) = w;W;_1, and e, (i) = y(i) — §(¢). Then

e(i) = 2(3) - () (18)
[xib+yi 1a] — [x;b; 1 +¥i 13; 1],
= wWi 1+ (yi-1 — ¥i-1)a,
= ed(i) + Alg Heo(d) (19)

where A(g~!) stands for the linear operator A(¢g~!) =
Ekle arg *, and a; are the coefficients of the FIR fil-
ter a. By invoking the mean-value theorem we can write
e (i) = f'[(0)] e(i), or, equivalently, e(i) = £ ~*[n(i)] o (s),



for some 7(i) in the interval connecting [x;b + y;_1a] and
[x;b;—1 + ¥i—1a;_1]- This allows us to conclude from (19)

that
1

) = - A

and, consequently, the update equation (17) leads to

w; = W;_1+
1
()] — Alg™)

Following the arguments of [5], we can therefore write

p(iyul [ea(9)] + v(4)

wi = Wio1 +a@)u] [ea(d) +9(0)] (20)

where the modified noise sequence {7(-)} is defined by,
p@)o@) = p(i)o(d) — aiea(d)
1
A(g™)

+p(0) T
@) -
and fi(i) = 1/||u;||>. This recursion is of the same form as
(8). It then follows in a similar way that

1%:l1” + B(0) lea()|* = Wial® + BG) 0@, (21)
| @ (i)} to
(1)}, denoted by T, is lossless, and that the
B()v()
to the resulting a priori estimation error \/fi(-)eq(-) can
be expressed in terms of the feedback structure shown in
Figure 4. We remark that the notation,

wu(t) 1 1

= Va0 o A@D L aw

which appears in the feedback loop, should be 1nterpreted
as follows: we first divide /[ i) by +/[(i), followed
by the filter (W, and then by a subsequent
NZON

The feedback loop now consists of a dynamic system.
But we can still proceed to study the l;—stability of the
overall configuration in much the same way as we did in
the former section. For this purpose, we use the vector
and matrix quantities introduced in (11)—(13) and define a
vector ¥y, similar to vy, but with the entries 7(-) instead
of v(-). We also use the diagonal matrix Fy from (14), and
the lower-triangular matrix A y that describes the action of
the FIR filter A on a sequence at its input; this is a strictly
lower-triangular Toeplitz matrix with band of width M,

lea (2)],

which establishes that the map from {w; i,
{Wz’a ﬂ(i)ea
overall mapping from the original disturbance

scaling by

0
ail 0
Ay = az ai 0

Tt follows from (21) that we can write

1 -1
MJZV MNM]2VVN
-1 i - 17__1
[1-My > My [F - AN My | Meq, v

If we now define

A(N) 2

1 ' 1
IT-Mpy> My [F ' —An] "My’ [|2,ina
—1
v(N) IMy Mny/|2,ind

and impose the condition A(N) < 1, we obtain that
a single-neuron Narendra network will be I»-stable in

>

the sense that the map from {\/a(-) v(), W_1} to
{V (") ea(-)} satisfies:
o ¥l + 3(V)IMR v
MZeanl < 77 ( Ny (@)

Moreover, the map from {/p(
will also be [5—stable with

77 (N)|[%s || + ¥ (V) MRV
1—A(N) '
The robustness (or l;—stability) condition A(N) < 1

corresponds to requiring the feedback matrix to be con-
tractive, i.e.,

, Wit to{+/u() eq(:

1
[Myeqn|l <

N
HI—MJ\,MJ\,Z[F];1 — An]™ <1.

2,ind

(23)

If we limit ourselves, for simplicity, to the case of con-
stant step-sizes u, then a sufficient condition for (23) is to
require:

%F’N—l - i(AN +AT)-M, > 0. (24)

Let
A=min[f @] ¢t =max 5 16)].

Then a sufficient condition for (24) is to require

I—AN#JFAJTV > [2—”4—@—1)] 1
which in turn is satisfied if

Re [1 — A(e??)] > 2_C —(A—1), welo,2n].
If we have an a-priori bound on Re(1 — A), say
Re [1 — A(e’)] < 4§, w € [0,2n] (25)

then a sufficient condition for (23) to be satisfied is to
choose u such that

p < 20A+6—1). (26)

This condition has an interesting connection with the linear
filtering case. For Feintuch’s algorithm [11], the sign of
6 is relevant to the stability of the algorithm. Here, the
additional term (A — 1) can compensate for this effect and
even negative values for § are allowed (see also simulation
examples).

For a sigmoid function f[z], we know that f —[n(i)] lies
in the range [4/3,00). Therefore, in this case, a sufficient
condition for (23) is given by the relation

[P

Ea(—0) (27)
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Fig. 4. Narendra’s algorithm as a time-variant lossless mapping with dynamic feedback.

VII. SIMULATION RESULTS

In the simulation that follows, a bipolar white random
sequence with variance one has been used for the entries of
the input vector x;. A plot of the learning curve is provided
for the relative system mismatch defined as

Srei(i) = El|[¥i—1 1]/ W—1]1* .

The curves are averaged over 50 Monte Carlo runs in order
to approximate Sy (7). Similar curves can be obtained if
E[e2(i)] is used instead.

For simulating the behaviour of Narendra’s network, two
different sets of values has been chosen with eight input
weights, one offset, and two feedback weights

wa ={0.6,09; 1,1,1,1,1,1,1,1,1}

and
wp = {0.9,0.9; 1,1,1,1,1,1,1,1,1}.

The first weight vector corresponds Real(1 — A) > 0.05,
while the second weight vector corresponds to Real(l —
A) > —0.0125. Figure 5 shows the learning curves for
B = 0.4 and 8 = 4 when the set w4 was used. In order to
provide a symmetrical feedback input the following sigmoid
function was applied:

_ 1 —exp(=0.582)

TolAl = 1+ exp(—0.58z) ’

which has the same maximal derivative as the one defined
in (1), i.e., flax = B/4. Since the filter inputs are {—1,+1}
patterns and the output is also limited to [—1, 1] we can use
¢ = 1/11 and according to bound (26) the training phase
converges if 4 < 1.645 for 8 = 0.4 in the case of w4. Figure
5 depicts two learning curves for y = 0.5 and p = 1.1 for
which we found fastest convergence. Instability occurred
for g > 2.3 which is in good agreement with (26). The
second (non-SPR) filter showed very similar behavior. Be-
cause of the negative real part, the limit step-size is smaller.
However, instable behaviour as in the Feintuch algorithm
does not occur here.

Also, for both filters, modifications as described before
in Sec. V can be suggested but they may or may not bring

advantages in general. This is not surprising since we need
to compensate the filtering effect of A(g~!) rather than
only the effect of the derivative f'[n]. However, for larger
B the effect of the derivative f'[] becomes stronger and
may exceed the filter effect. This situation is of particular
interest since the network with constant step-size has very
poor convergence behaviour (see (d) and (e)). Simulations
were performed with the recurrent network by employing
the optimal choices of Sec. V. Curve (e) shows that method
(C) (also (A) and (B)) can be used to accelerate the train-
ing phase considerably (for large 3).

Srel(i) '
sol! (c) i
in dB i d ]
-60 (a) 4
-100F ( 4
-120F (e) <

1000 _ 1500 E)OO 25Q0, 3000 3500 4000 4500 5000

Number of iterations

Fig. 5. Learning curves for Narendra’s network (a)u = 0.5,8 =
0.4,(b)u=1.1,8=04,(c)p =0.1,8=4,(d) p =0.2,8 =4, (e)
method (C), B = 4.
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