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Abstract. We pose an identification problem that involves a nonlinear output equation and
proceed to suggest an approximate linear solution. The approximation is obtained in two
stages. We first replace the nonlinear functional by a linear relation, thus reducing the
problem to a standard linear H°° —setting. We then suggest constructing an approximation
that results in an overall feedback structure in order to meet desired robustness and stability
properties. By combining the linear H*° solution with a widely-used small gain theorem
we show, under suitable conditions, that the approximate solution still leads to a filter with
guaranteed lp-stability. An example in the context of pole-zero (or IIR) system identification
is discussed in details. The proposed structure is also shown to include, as special cases,
several adaptive filters that have been employed earlier in the literature in the context of IIR
modeling. In particular, two algorithms due to Feintuch and Landau, as well as the so-called
pseudo-linear regression algorithm, are discussed within the framework proposed herein.
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INTRODUCTION

Considerable research activity has been devoted over
the last two decades to the analysis and design of
adaptive algorithms in both signal processing and
control applications. In particular, several ingenious
methods have been proposed for the performance
and stability analysis of the varied adaptive schemes.
Among these, the most notable are the hyperstability
results of Popov, a nice account of which is given by
(Landau, 1979), the ODE approach of Ljung (Ljung
and Soderstrom, 1983), and the related class of av-
eraging methods for trajectory approximation, as de-
scribed in the recent book by (Solo and Kong, 1995).

Correspondingly, in the last decade, there has been an
explosion of research in the areas of robust filtering
and control, as indicated by some of the references at
the end of this paper. A major concern here is the de-
sign of filters and controllers that are robust to param-
eter variations and to exogenous signals. In the filter-
ing context, for instance, it is currently known how to
design estimators with bounded H* (or 2—induced)
norms, and the available results provide us with both
(1) solvability and existence conditions, as well as (ii)
recursive methods for the construction of a solution.
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Motivated by these results, we take here an alternative
look at the performance analysis of adaptive schemes.
The discussion in this paper is fundamentally based on
a useful tool in system analysis widely known as the
small gain theorem. In loose terms, the theorem states
that a feedback interconnection of two systems is sta-
ble if the product of their gains (or induced norms)
is less than unity. While this statement can be re-
formulated in terms of a hyperstability (or passivity)
result, the analysis provided in this paper has several
additional features.

First, by relying on the small gain theorem, we can
advantageously exploit the wealth of results available
in the H° —setting. In other words, since we essen-
tially know how to design a robust filter, i.e., a system
with a bounded gain, we can then guarantee an overall
stable interconnection by imposing a condition on the
gain of the feedback system. This is especially helpful
in the design (i.e., synthesis) phase. In later sections,
for example, we shall show that the adaptive scheme
proposed herein includes, as special cases, several ear-
lier algorithms, which, interestingly, also establishes
that these earlier schemes can be regarded as special

H > —filters.

Secondly, although the feedback nature of most adap-
tive schemes has been advantageously exploited in
earlier places in the literature (see, e.g., (Landau,
1979; Ljung and Séderstrém, 1983)), the feedback con-
figuration in this paper is of a different nature. It does
not only refer to the fact that the update equations of



an adaptive scheme can be put into a feedback form,
but is instead motivated by our concern with the over-
all robustness performance of the algorithm. By this
we mean that the feedback configuration is defined
in such a way so as to explicitly consider the effect
of both the measurement noise and the uncertainty in
the initial guess on the algorithm performance.

Thirdly, the approach taken herein also addresses
some new issues. In particular, we shall provide in
a later section a stability analysis of two IIR adap-
tive schemes that are often attributed to (Landau,
1979) and (Feintuch, 1976). While a sufficient sta-
bility condition is available for Landau’s scheme in
terms of a positive-realness constraint (e.g., (Solo and
Kong, 1995; pp.146-150)), there does not seem to ex-
ist a similar analysis for the closely related, yet dif-
ferent, Feintuch’s algorithm. An explanation is pro-
vided here by showing that Feintuch’s recursion re-
quires an additional condition on the data. This is
obtained by establishing the following interesting fact:
Landau’s scheme is shown to be a special case of a
so-called aposteriori H*-filter while Feintuch’s algo-
rithm is shown to be a special case of a so-called apri-
ort H*-filter. It is known in H°°—theory that the
solvability and existence conditions for both filters are
different. Here we show that in Landau’s case, the
condition trivializes and is therefore unnecessary, but
it remains in Feintuch’s case and is therefore required,
along with a positive-realness condition.

Finally, and although not treated in this paper, we
may remark that the feedback analysis suggested
herein can be further shown to provide an interpreta-
tion of most adaptive schemes in terms of an intercon-
nection that consists of a lossless (i.e., energy preserv-
ing) feedforward mapping and of either a memoryless
or a dynamic feedback mapping, both of which are
allowed to be time-variant. In this context, some in-
teresting energy arguments can be invoked to further
analyze the performance of the algorithms.

PROBLEM STATEMENT

Consider a collection of noisy measurements {y(i)}/L,
that are related to a (column) vector of unknown pa-
rameters w via the nonlinear relation y(z) = h;(w)w+
v(i). Here v(1) stands for the noisy component at the
discrete time instant ¢, and h,‘(w) denotes a time-
variant row vector whose entries are themselves func-
tions of the unknown entries of w. For notational
convenience, we shall use boldface letters to denote
vectors.

The measurements {y(i)} can be alternatively inter-
preted as the noisy outputs of a simple state-space
model of the form

Xit1 =X, y(i) = hi(xi)xi +v(1), xo =w. (1)

Let z(1) denote a desired combination of the unknown
vector w, say z(1) = gi(w)w = g;(x;)x;, and let £(1]1)
denote an estimate for z(¢) that is dependent on the
observation data {y(-)} up to time i, according to the
following criterion. Let Ily be a positive-definite ma-
trix and choose any initial guess for w, which we shall

denote by X¢ or w_;. For every time instant i, define
the ratio: r(i) 2

3 imo l2(0) = 2G1)°
(xo0 — %) TI5™ (x0 — %) + 3 _o [y(s) = hy(x, )%,

which provides a relative measure of the energies due
to the estimation error in z(:), the initial guess Xo,
and the disturbance v(-). The objective is to deter-
mine, if possible, estimates 2(j|j), for j =0,1,..., N,
so as to guarantee that, for all Xo and v(-), the ratios
r(1) will be all bounded by a given positive constant,
say r(1) < 4? for 0 < ¢ < N. These conditions guar-
antee that the transfer operator that maps the dis-
turbances, {Ho_l/2 (%0 — %o), v(1)}iL, to the resulting
estimation errors, {£(i|i) = z(i) — 2(i|7) }{Lo, will have
a 2—induced (or H*—)norm bounded by v (i.e., is l

stable).

AN APPROXIMATE LINEAR MODEL

The presence of the w—dependent (nonlinear) func-
tions hi(-) and g¢(~), in both the numerator and the
denominator of the cost ratio r(i), complicates the
problem at hand. For this reason, we shall proceed
here in two steps.

We shall first invoke an approximation that will re-
place the nonlinear inner products by linear relations.
This will allow us to reduce the problem formula-
tion to a standard linear H °°—setting, which has been
widely studied in the literature. But a difficulty here
is to exhibit an approximation that will still provide,
under suitable conditions, an approximate linear filter
with a guaranteed lo-stable mapping from the original

disturbances {Ho_l/2 (X0 — %o), v(i)}L, to the result-
ing (yet modified) estimation errors, say {2'(i|i)}7,
(see Theorem 1 further ahead); we shall also argue
later that, in important applications, the use of the
modified estimation errors z'(-) does not affect the

overall desired performance (see, e.g., Algorithm 2).

To begin with, assume we have available at each time
instant i row vector estimates h; and g; for h;(w) and
gi(w), respectively. These estimates may be com-
puted in different forms. One possibility is the so-
called bootstrap technique that is often used in system
identification (e.g., (Ljung and Soderstrém, 1983)).
This technique assumes that we have access to recur-
sive estimates of the parameter vector w, which are
then employed in approximating h;(-) and g;(-); if we
let w;_1 denote the estimate of w that is based on the
data up to and including time i—1 (we also denote this
by %;_1ji—1), then the bootstrap method computes h;

and g; via h; = hi(w;_1) and & = gi(wi_1).

But many other possibilities for choosing the esti-
mates lAli and g; clearly exist. The bootstrap method
need not guarantee an overall l;-stable filter and a
challenging task is to provide alternative constructions
that guarantee a desired performance. We shall ex-
hibit in the sequel one such example that guarantees
the overall l;—stability of the resulting filter despite
the linear approximation.



But for now, let us simply assume that, in some way, CONVERGENCE AND [,—STABILITY OF

we have available estimates IAlz and g;. This then al- THE APPROXIMATE FILTER
lows us to replace the earlier ratio r(z) in (2) by a
linearized version given by r'(i) = The numerator in the modified ratio r'(i) includes
the aposteriori-error term é,(j) = g;w — g;w;, while
E;zo |&;x; — g])t]|]|2 the denominator includes energy terms of the form

ly(5) —hyw|?, with the estimate h; replacing the true
function hj(w). To clarify the implications of this
approximation, note that we can write

(X0 — %0)* 115 (%0 — Xo) + 3o [9(5) — By, 2

We now proceed to determine state-estimates X;|; so
as to guarantee that the above ratio will be bounded ) . N A .
by a given constant, say &2, r'(i) < € for 0 < i < y() —hyw = [hﬂ(w) - hJ] w () = 2()), (2)
N. The approximate problem is now formulated in
a form that is standard in the H® — literature. One
possible solution is the following H °°—adaptive filter,

g., (Yaesh and Shaked, 1991; Hassibi, Sayed, and
Kailath, 1993b).

which shows that the extra (approximation error)
term [h]( ) — h]‘] w is added to the noise component
v(7) when compared to the denominator of r(7).

Now assume that the estimates h; and g; are cho-

. sen in such a way (see example in next section) so
ALGORITHM 1. [APOSTERIORI FILTER] The estimates . v ( . b L )
as to result in an explicit relation between 9(j) and

X];; {aljs’(z equ:zl to w;) can be evaluated recursively as {0(),é5(j)}. This is shown in the feedback struc-
follows: %;; = ture in Figure 1 where we have denoted the differ-
A . . -1 ) L ence (w — w_1) by w_1. The symbol 7x denotes
Xj-1)-1 + Pjhy [1 +hJPJhJ] ['y(]) - thJ—1|J—1] > the (causal) operator that maps the (modified) dis-
turbances {Ho_l/2 (w—w_1), 9(j)}}Zo to the estima-
tion errors {é,(j)}]<o. In view of Algorithm 1, this
operator is constructed so as to have a 2—induced (or
X e H*®°—) norm bounded by §. The symbols Fy and Vx
Pjt1 =P; — P [ g; hj ] R_; [ 1”1] :| P, denote causal (linear) operators relating the sequence
J {#(5)}7Z, to the sequences {v(}),ép(j)} 2o (assuming

zero initial cpnditions).

(N E PR S e L
o)

with X_1|_; = Xo and where P; satisfies the Riccati
difference equation: Po = Ilg,

Moreover, this solution guarantees {r'(i) < ey, i,
and only if, P;41 >0 for y =0,1,..., N.

Fn

The above filter is a so-called filtered or aposterioriver-
sion. There is a related estimation or apriori version,
which estimates g;x; by using only the data {y(j)}
up to (i — 1) rather than i, i.e., it tries to bound the
ratios 7'’ (1) =

Fig. 1. Feedback structure of the linearized solution.
Let || - ||co denote the 2—induced norm of a (linear)

operator. Using the triangle inequality of norms, the
fact that v/(N) < €2, along with (3) below, we con-

i A . 2 clude the following.
E] 0 |g]X] - gjlej 1|

(%0 — %o )*II5 (Xo — %) + E] o lv(3) — 1"1]X]|2’ THEOREM 1. Consider the recursive solzftz'on of Algo-
rithm 1 and assume that the estimates h; and g; re-
where %;);_; denotes an estimate for x; that is based sult in a feedback structure of the form indicated in
on the data up to time 3 — 1. It is often denoted by Figure 1. If the following condition s satisfied,
the shorthand notation X; and can also be interpreted
as equal to w;_1. ||TN||<>O||]:N||<>O <1, (3)
ALGORITHM 1a. [APRIORI FILTER] The estimates then the mapping from {Ho_l/z‘ﬁ_hv()} to {ép(-)} is
X;j—1 can be evaluated recurszvely as follows. Let ly —stable with finite gain in the following sense,

P, = [P7' — %518, . Then %44, =

IA

) . N N 4
%;—1 + P;h] [l—l—th]‘hJ] [‘y(])—th”]_]], (4)

where Xo|—1 = Xo and P; is as above. This solution

guarantees {r" (i) < €2}, if, and only if, P, > 0 for 12
J=0,1,...,N. b {1592 + [Vl

D 2+ B

In the following discussion, we shall mainly focus on
the aposteriori version, viz., Algorithm 1. We shall re- where kx £ 1Twlloo/ (1 = | T || o || F v ||oo ), and Bi is

turn however to the second version (Algorithm 1A) in a nonnegative finite constant that accounts for possibly
the last section when we discuss Feintuch’s algorithm. nonzero initial conditions.



Expression (4) establishes that the map from
{1157 2% 1, ||V |lsov(-)} to {ép(-)} is lo-stable (with
finite gain — see, e.g, (Vidyasagar, 1993; p.365) and
(Khalil, 1992; 213-215)). Note that this map involves
the original disturbances {v(:)} rather than {()}.
Note also that since we already know that || 7y ||« < &,
then a sufficient condition for (3) to hold is to re-
quire ||Fn|lec < 1/€. These results can be regarded
as an immediate application of the small gain theo-
rem (see, e.g., (Khalil, 1992; p.214) and (Vidyasagar,
1993; p.337)) to the feedback connection of Figure 1.

In the limit, if the noise sequence {v(-)} has finite en-
ergy, i.e., E;io [v(5)]* < oo, and if we further let 7,
F and V denote the (corresponding) semi-infinite op-
erators satisfying (3) with N — oo and ||V|e < oo,
then we also get that (assuming 8., < oo or that
the effect of initial conditions dies out with time)
E;OO |éx(5)]? < oo, which implies that error conver-

gence is guaranteed, i.e., lim; .o é,(7) = 0.

AN EXAMPLE: THE CASE OF SYSTEMS
WITH SHIFT STRUCTURE

In order to illustrate the above discussion, we now
consider in details an important situation that often
arises in system identification. We shall employ here
the shift operator notation ¢~ '[u(k)] = u(k—1). Thus,
applying an operator V[/(q_1 = Zi\il wr ¢ ¥ to a
sequence d(j) means

W] = Y wed— k).

The case we consider assumes that the nonlinear vec-
tors hj(w) and g;(w) are equal and exhibit shiftstruc-
ture (a motivation for this situation is provided in the

next section). By this we mean that their entries are

of the form hj(w) = g;(w) =

[ dG—1) d(j—2) d(j— M) |, (5)

where M denotes the size of hj(w), and d(-) is a
scalar entry that is still assumed to depend nonlin-
early on w. Setting g;(w) equal to hj(w) implies
that z(j) = h;(w)w and, consequently, z(j) is equal
to the uncorrupted component in the noisy measure-
ment y(7) = hj(w)w + v(j).

It is further assumed that each entry d(y) is recursively
generated via

)y (w)w], (6)

where S(¢™") denotes an autoregressive filter. This
means that d(j) is obtained by filtering h;(w)w
through an autoregressive filter. The special case
S(g™"') = 1 often arises in autoregressive modeling,
and is discussed in the next section. We also assume
that a similar shift structure is incorporated into the
construction of the estimate flj, say

hy=[d(-1) dij-2) dg-m) ], (1)

where the choice of the UZ() is as explained below.

The difference [d(j) — UZ(])] is denoted by d~(]), and
we further associate with w the polynomial W(g™"),
where the {w;} are the entries of w. It is then easy
to see that the expression (2) for 9(j) becomes

o(y) = [hj(w) — 13]] w+v(j),
W(g™Hd()] + (). (8)

Our purpose is to relate d~(]) to €,(j), which will
then lead to a desired relation between o(j) and
{€x(7),v(y)}. For this purpose, we shall now exhibit
a possibility for choosing the ci() and, consequently,
for completely defining the estimate fl], in order to
achieve such relation. The ci(]) will be computed as
follows:

d(y) = S(q_l)[ﬁjwj]. (9)

Note that this estimate is not of the bootstrap type
that we referred to earlier since the computation of
CZ(]) is highly dependent not only on the w;_; but
also on all previous estimates of w.

The point now is that construction (9) allows us to
relate d(-) to é,(+) via a filtering operation as follows:

d(7) = d(j) - ()

= S(¢~ ) [ h]W]] ,

= S(¢~ 1) [{h] h]}w + ép(j)],

= SeTW(a~ )[ 5)] + Sa™") (5],
_ S(a) 5 (i

- R (10)

Combining with (8) we see that

S(eYW(e™) .. ..
1— S(q‘l)W(q‘l)[EP(])]'

o(5) = () +

In terms of the structure of Figure 1 we have Vy =1
(the identity operator) and Fn equal to the (N +41) x
(N +1) leading triangular operator that describes the
action of SW/(1— SW) over the first (N + 1) samples

of {é,(-)} (in the absence of initial conditions).

A sufficient condition for (3) to hold is to require
|Fnlleo < 1/¢. This is satisfied if SW/1 — SW is
stable and

£5(e”)W(e™)

1, 0<w<2r (11
T T —S(@ayW(aw)| S0 Ve ST (1)

The stability of SW/(1 — SW) also implies that the
effect of initial conditions will die out as time pro-
gresses. If the noise sequence {v(-)} further has finite
energy, then we also conclude that lim; .. €,(5) = 0.
It also follows from the stability of S/(1 — SW),
from the convergence of é,(j), and from (10) that
lim; o d~(]) = 0. We summarize the example of this
section in the form of an algorithm, which can be
seen as special case of Algorithm 1 (it is also writ-
ten, for convenience, in terms of w; rather than %;|;).
ALGORITHM 2. [SYSTEMS WITH SHIFT STRUCTURE]
Consider {y(j) = hj(w)w+v(j)}, where hj(w) is as-
sumed to ezhibit a shift structure as in (5) with its en-



tries {d(-)} computed via (6), for a given filter S(¢™").
Assume further that fl] is also constructed so as to ex-
hibit a shift structure as in (7) and that its entries are
computed via (9).

If the quantity P11 computed below is positive-
definite for 0 < j < N, and if (11) holds, then the
following filter, with initial guess w_1 and Py = Ilg,

W =W -1+ PJB; [1 +ﬁjpjﬁ;‘]_l [y(]) -

e | b
Py =P, —P,[ k w]Rl[ﬁ]E,

J €,J

- 0 f ok I %
([ ]t ] 5

guarantees (4) with ||Vn|leo = 1. If {v(-)} has finite

energy, then lim;_. o é,(j) = 0.

The above algorithm can in fact be related to so-
called pseudo-linear regression (PLR) algorithms in
IIR modeling (e.g., (Landau, 1979)[p. 167]). To clar-
ify this, we first note, via the so-called matrix inversion
formula, that the Riccati recursion in Algorithm 2 is
equivalent to

P, =P +(1-¢*)hlh,.

This means that the positivity condition on the {P;}
is always satisfied for any choice &€ > 1. Moreover, if
we again invert the above expression we obtain that
the Riccati recursion can be rewritten in the equiva-
lent (and more recognizable) form

P,h’h;P,
(1—¢&2)1 4+ h;P;h?

INSTANTANEOUS-GRADIENT-BASED
IIR ADAPTIVE FILTERS

Pjy1=P; -

The Riccati recursion of Algorithm 2 can also be
shown to trivialize in an important special case. This
fact was noted in (Hassibi, Sayed, and Kailath, 1993a)
in the linear context of FIR (or MA) identification and
will now be extended to the nonlinear scenario of the
previous section.

If £ is chosen to be one, £ = 1, then the recursion
trivializes to P]_:1 = P;l = Ho_l, where Ilg is the
initial condition. The solvability condition then be-
comes Iy > 0. In particular, this is always satisfied
if we choose II; = oI, a (positive) constant multiple
of the identity. Under these conditions, the update of
the weight estimate in Algorithm 2 reduces to

« . N7
wW; =wj_1+ 7A2h] [y(]) — h]‘W]‘_1] , (12)

1+ a|[hy |3
which is an instantaneous-gradient-based recursion
with a step-size of the form /(1 4 «|/h;]|3).

Stability Analysis and Loop Transformations

The stability condition of Algorithm 2 requires

hJW]—l] )

SW/(1—SW) to be strictly contractive, which in turn
requires the positive-real part of (1—SW) to be larger
than 1/2. This range can be extended by applying
a useful scaling tool that is related to so-called loop
transformations in passivity analysis. Indeed, recur-
sion (12) can be rewritten in the equivalent form

Wy = wi ol [t 6 0+ 00)] (13)
= w,_1+ah; [eP(]) + 9(1)], (14)

where we have defined
00) 2 ~&0) + ﬁ[ép(m Tt ()

The map from {a /2% _1,4(-)} to {ép(-)} is a strict
contraction since, as argued above, the recursion (14)
is an aposteriori H°°—filter and the positivity condi-
tion is always satisfied due to P; = 1Ip = oI > 0. This
result holds for any update filter of the form (14) and
for any noise sequence #(-). The special construction
(15) was further exploited while studying the stability
of the feedback interconnection. These observations
motivate us to rewrite the update recursion (13) in
the equivalent form

w; = W1 —|—/§'ﬁ; a/‘fw[k (D + %'U(]) )
= w,_1+ 07 [60) + 9'()], (16)

where we have now defined
9(0) 2 =)+ —L2 e, ()] + Zoi),  (17)

1— SW 3

and f is any positive real number. The recur-
sion (16) guarantees a strict contraction map from
{8712%_1, ()} to {ép(-)}. Accordingly, an overall
l; —stable system from {87Y2W_1, o/ Bv(-)} to {ép(-)}

will be guaranteed if we impose
a/f

-1 1 18
T T = S(ere )W (e®) < b (18)

which requires Real [1—S(e?“)W (e’“)] > a/2/3. Since
this should be true for any choice of 3, we therefore
conclude, by choosing f large enough, that a suffi-
cient condition for the iz —stability of (12) is the strict
positive-realness of the function 1/(1—SW). This con-
dition guarantees that the update solution (12) will
always result in a convergent sequence {é,(-)}, under
a finite-energy assumption on {v(-)}.

In the next section we consider two important special
cases that arise in IR modeling.

Landau’s Scheme for IIR Modeling

Consider a linear time-invariant system that is de-
scribed by a recursive (i.e., pole-zero or IIR) difference
equation of the form

M, My —1

d(j) = E:akd]—k E:bku]—k

k=1



= [dm wy | [ 1‘; ] = h,(w)w, (19)

where d;_1 = [ d(j—1) d(j — M) | and
u = [ u(j) u(j — My+1) |, while a =
col{ai,...,anm,}, and b = col{bo,...,bar,—1}. The
row (data) vector hj(w) = [ d;—1  u; ] is depen-
dent on w since the entries of d;_1 depend on w. Here
w is a column vector that contains the parameters a

and b.

The problem of interest is the following: given noisy
measurements {y(-)} of the output of the system,
{d(-)}, in response to a known input sequence {u(-)},
say y(7) = d(j) + v(5) = hj(w)w + v(j), estimate the
system parameters a and b (or w).

An existing approximate solution, which is based on
instantaneous-gradient ideas (Landau, 1979), is one
that updates the weight estimate according to ex-
pression (12) and where flj is computed as flj =
[ &]_1 u, ] Here, the u; is known, while the
entries of d;_; = [ d(j —1) d(5 — My) ],
are estimated recursively: start with initial guesses
{ci(—l), J(—Z), e, ci(—]\f[a)} and compute successive
estimates J(]), for § > 0, via the recursion:

d(j) = djaia; +u;by, (20)

where {a;,b,} denote estimates of {a, b} at the j"
iteration. This is a special case of the construction (9)
(with S =1). We also see here that we only need to
estimate the leading part of h; (the part correspond-
ing to d;_1) since the u; part is given. Nevertheless,
the same framework discussed so-far in the paper ap-
plies. All we have to do is employ the results of Al-
gorithm 2 with W{(g™") replaced by A(¢™'). This is
because the difference (h; — h;) now has the form
[ (dj—1 — d]_l) 0 ] . That is, its second block en-
try is zero and, consequently, (h; — lAl])W = (dj_1 —
d]_1)a. We then conclude that a sufficient condition
for Iz-stability is to require the strict positive-realness

of 1/(1 — A).

While this is a known result for Landau’s scheme (e.g.,
(Solo and Kong, 1995; pp.146-150)), we have red-
erived it here within the general framework of this
paper. In particular, we have established that Lan-
dau’s scheme is in fact a special case of the aposterior:
H*°filter of Algorithm 2, and that the corresponding
solvability condition has been trivialized by choosing

Ho = ozI.

Feintuch’s Scheme for IIR Modeling

A related discussion is provided in (Rupp and Sayed,
1995), where a variant of recursion (12) is used, viz.,
one that employs a constant step size, as suggested by
(Feintuch, 1976),

wj = wj—1 + phj [y(5) —hyw;], (21)
where {a;,b;} in (20) are further replaced by

{aj_1,b;_1}. This is in fact a special case of the apri-
ort filter of Algorithm 1A, in exactly the same way as

(12) is a special case of the aposteriori filter of Algo-
rithm 1. By setting &, = lAl]‘, =1, and Il = pl
in Algorithm 1A we obtain (21). Now, however, the
solvability condition requires (p™'I — lAllel]) > 0 or,
equivalently, u||ﬁ]||2 < 1. Under this additional as-
sumption, a sufficient condition for lz-stability is to
require the contractiveness of A/(1—A) — more details
along the lines of this paper can be found in (Sayed
and Rupp, 1994; Sayed and Kailath, 1994; Rupp and
Sayed, 1995).
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