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Abstract. We present a new approach to the discrete-time Chandrasekhar recursions and some
generalizations thereof. We extend the recursions to a class of structured time-variant state-space
models, and discuss connections with the (generalized) Schur algorithm. We also apply the extended
recursions to the adaptive filtering problem and give a transparent derivation of fast recursive least-

squares algorithms.
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INTRODUCTION

Adaptive filtering is widely used to cope with time-
variations of system parameters and to compensate
for the lack of a priori knowledge in the statistical
properties of the input data. For a variety of reasons,
the least—squares criterion is used to derive linear es-
timators for the desired parameters (Kailath, 1981;
Haykin, 1991) A wide range of algorithms and schemes
has been developed to exploit the data structure and
to reduce the computational complexity. These ba-
sically fall into three main groups of adaptive fil-
tering algorithms: Recursive Least Squares (RLS)
and the corresponding fast versions, Lattice Least—
Squares (LLS), and QR-based least-squares (see e.g.,
(Haykin, 1991) and the references therein for more de-
tails on the subject). The derivation of the different
schemes may be put into a unified framework (Sayed
and Kailath, 1992) by relating the filtering problem
to convenient structured (covariance) matrices. We
focus here on the RLS approach and show that the
associated fast versions follow by applying the (gener-
alized) Schur algorithm to a Toeplitz-like covariance
matrix. Fast RLS algorithms were originally derived
in (Carayannis, Manolakis and Kalouptsidis, 1983;
Cioffi and Kailath, 1984). It was later shown (Slock,
1989; Houacine, 1991) that these fast versions also
follow by considering the Chandrasekhar equations
(Kailath, Vieira and Morf, 1978) associated with the
linear least-squares estimation problem. We present
a new approach to the discrete-time Chandrasekhar
recursions and some generalizations thereof. The ap-
proach is a simplification and extension of the deriva-
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tion in (Kailath, Sayed and Lev-Ari, 1992). We ex-
tend the Chandrasekhar recursions to a class of struc-
tured time-variant state-space models, and show that
within this framework, fast versions of the recursive
least-squares algorithm in the single channel, multi-
channel, nonlinear or multidimensional contexts, also
follow naturally.

First, a brief review of known results. Consider a p x 1
process {y;} with an n-dimensional state-space model

Xit1 = Fix; +Giug
yi H;x; +v;

for 1 >0 (1)

where {F;,G;, H;} are known matrices with dimen-
sions n X n,n X m and p X n respectively. We assume
that xo,u; and v; are stochastic variables that satisfy

EX() = )_(0, E(Xo — )_(0)()(0 — }_(0)* = Ho

Eu;xj = Evixy; =0, Ev;,=FEu;=0

i . . i Ci
E[:i][uj vj]z[g; Ri:|5ij

with R; positive-definite. The symbol # denotes com-
plex conjugation and the letter E denotes expected
value. Let X;;_; be the linear least-squares esti-
mate of x; given {yo, ..., yi—1}. The Kalman filter
(Kalman, 1960) computes this quantity via the recur-
sion: Xg/_1 = Xo,

Kit1s = FiXg)i-q1 + KiR;,-lei (2)

where €; = y; — HiX;;;_1, Rei = E(ei€}) and K; =



E(xit1€;). Kalman showed that K; and R.; can be
computed by the expressions

Ki = F@P,L“_lH: + GiCi, RE,@' == H@'P“i_lH; + R@

where P;;_; is the error covariance in the one-step

. . . X
prediction of x;: Pjj;_y = E(x; —%;)i—1) (% —X;5-1)",
and satisfies the Riccati difference recursion: Py_; =
1o,

Py, =FiPy F] — KiR;ilK; + GiQiG;

We can check that the number of operations (i.e.
multiplications and additions) needed in going from
index 4 to index (¢ + 1) in the Riccati recursion is
O(n®), and this is true whether or not the state-space
model has constant parameters. However, one expects
a computationally more efficient procedure in the
case of time-invariant (also called constant-parameter)
models {F,G, H,Q, R,C}. Indeed, it has been shown
(see e.g., (Kailath, Vieira and Morf, 1978)) that in
the constant-parameter case the complexity can be
reduced to O(n’a) per iteration, where

[0

rank (FIIoF* + GQG™ — Ky 0K, o — Ilo)
= rank (Pyo— Py-1)

and Kp; = KiR;Z/z. This is achieved by using
the so-called Chandrasekhar recursions to compute
{Ki, R.,i} for usein the formulas (2). There are many
forms for the Chandrasekhar recursions, but we shall
give here perhaps the simplest (so-called square-root)

version.

SQUARE-ROOT CHANDRASEKHAR
ALGORITHM

Let 6P; = P4y — Pji—1. It turns out that for
constant-parameter models, the quantity §P; often
has low rank, much less than n, and this fact can be
exploited to find a lower complexity algorithm. Ob-
serve that 0 P; is a Hermitian matrix, so that it has
only real eigenvalues. We can factor it (nonuniquely)
as

0P; = Piy1); — Pijsm1 = LiSiL; (3)

where S; is an a X « signature matrix, viz., a diago-
nal matrix with as many +1 on the diagonal as § P;
has positive and negative eigenvalues. In fact we can
assume, as shown ahead, that S; is the same for all ¢
(that is, S; = S Vi). We now form the pre-array (the
reason for choosing such pre-arrays can be justified ge-
ometrically as in (Morf and Kailath, 1975). They also
arise naturally in the context of the Schur algorithm
(Kailath, Sayed and Lev-Ari, 1992), as shown later
in this paper. In this section, we shall give a simple
algebraic verification.)

1/2
Ai = }ifv/i HLZ
Ky FL;

Let ®; be any J = (I®.S;)—unitary matrix (@;JO; =
J) that triangularizes A;. That is,

X 0
Ai@"_[y Z]

Comparing the entries on both sides of the equality
A;JA; = A;0,J07 A}, we get
XX* = R.;+HLSLH"

= R.i+H(Py.; — Py_1)H”
= Re,i + Re,i+1 - Re,i = Re,i+1

So we can choose X = R:,/ii-l' Moreover,
YX* = Kz'—}-FL,'SiL;H*

= Ki+F(Py1; — Pji-1)H = Kipa

and hence we can identify Y = K, ;+1. Finally, YY*+
VATV AR

KiR_K; + FL;S;L; F*
KiR_[K{ + F(Piy1; — Pii1)F”

Therefore, ZSg:Z* = i+2)i+1 — P1,+1‘l Comparing
with (3) we see that we can choose Siy1 = S; and
Z = L;i4+1. So we are led to the following recursion

1/2 . 1/2
[fzs,,- HL; ]e,: [ RGO ] ()
Kpi FL; Kpit1 Lit1

where ®; is any J = (I ® S)—unitary matrix that
produces a block zero in the (1,2) entry on the right-
hand side of (4). These are called the square-root
Chandrasekhar recursions. We can verify that each
such iteration takes only O((n +p)(n+ @)) = O(n’a)
computations when n > p, as is often the case. We re-
mark that the relation among the (generalized) Levin-
son algorithm, the (generalized) Schur algorithm and
the Chandrasekhar recursions has been pointed out
already in (Kailath, Vieira and Morf, 1978; Kailath,
Sayed and Lev-Ari, 1992).

STRUCTURED TIME-VARIANT
MODELS

The derivation of the Chandrasekhar recursions (4) is
based on the fact that § P; has low rank for constant-
parameter systems, as shown in expression (3). We
now show how to extend (4) to a class of time-variant
state-space models that exhibit certain structure in
their time-variation. For this purpose, we consider
again the state-space model given by (1), and we shall
say that it is a structured time-variant model if there
exist n X n matrices ¥; such that F;, G;, and H; vary
according to the following rules:

Hy=Hi1Y;, F;i 1V =Y, 1 F;, Git1 =¥ 11G; (5)



It is clear that constant-parameter systems satisfy (5)
with ¥; = I. We shall show later that another special
case of (5) arises in the recursive least-squares prob-
lem. We further assume that the covariance matrices
R;,C; and @; are time-invariant, even though the re-
strictions on Q;, R; and G; can be dropped (Sayed and
Kailath, 1992) .

It turns out that in order to extend the Chandrasekhar
recursions to time-variant structured models, we need
to consider the difference dw; P; = P; 1, — ¥ F;;—1Y;,
which we factor (nonuniquely) as follows

Py — WPy 1Y = LiS;L; (6)

where S; is an a X « signature matrix. In fact, it also
turns out that S; is the same for all 7 (S; = S). The
reason for considering (5) and the difference (6) will
become clear as soon as we give a simple algebraic ver-
ification of the proposed recursions, as well as when we
discuss the connections with the (generalized) Schur
algorithm. We now form the pre-array

RM? Hi1 L ]

Ai = €%
Vit1Kp,i Fip1Li

and choose an arbitrary J = (I @ S)—unitary matrix,
®;, that triangularizes A;. That is,

X 0
Ai@"‘[y Z]

Comparing the entries on both sides of the equality
AiJA; = Ai®;JO; A, we can check easily, as done in
the previous section, that X = R:,/ZH? Y = Kpit1,

and Z = L;+1. For example, we have

XX* = Rei+ Hi11LiSiL;H{\,
= Rei+ Hit1(Piyri — YiPyio1%])Hi
= Rei+Hi1PipHYy — HiPy;_H;

= Re,i+1
which shows that we can choose X = R:’/iil. A similar
argument holds for Y and Z. Therefore, we are led
to the following (square-root) extended Chandrasekhar
recursion

R} HinlLs O, = R, 0
Vi 1Ky Fip1L; pit1  Lita

where ®; is any J = (I & S)—unitary matrix that
produces a block zero in the (1,2) entry on the right-
hand side of the above expression.

CONNECTION TO THE SCHUR
ALGORITHM

Let R = E(y:y;){5—o denote the covariance matrix of
the output process {y;}, and define Z to be the lower
triangular shift matrix with ones on the p* subdi-
agonal and zeros elsewhere. Clearly R is a Hermi-
tian positive-definite block-matrix with p x p block-
entries. We now verify that, for a structured time-
variant state-space model as in (5), the covariance ma-

trix R exhibits (displacement) structure, in the sense
that R — ZRZ* has low rank. We then show that the
(generalized) Schur algorithm reduces to the extended
Chandrasekhar recursions when the extra structure
provided by the assumed state-space model is properly
incorporated into the Schur recursions. Let X; = Ex;,
and define IT; = E(x; —%;)(x;—X%;)* to be the state co-
variance matrix. From the state equation (1) it follows
that II; obeys the recursion II;11 = FILF +GiQG;.
Moreover, the following simple identities are easy to
check

i1 — WILY; = FUARH
E(yiyi —yic1yi-) = HFUUARTEUh;
E(yiyi1 —yioy;) = HFUUARHE

where Fl = FyF; ... Fy, FI9" =T and A =TI, —
WollpPy. These expressions lead to R — ZRZ* =

Re.o K H; Ky
H1K, H,AH; HAF*UHZ
H,2FU K, HFUAH; Hy,FUAFMHS
HsFPK, HsFPAH; HsFRIAFHS

There is significant redundancy in the elements of
R — ZRZ*. To explore this, we factor the leading
2p X 2p principal submatrix into the (rank and inertia
revealing) form

Reo  KgHP | _
H\K, H.AH? |~

e sl 5
A B 0o S A B

for some signature matrix S and matrix entries A
and B to be determined. Comparing both sides of
the above expression we conclude that A = H1 K,
and BSB* = HI(P1|0 - \I/0P0|,1\I/8)H; This sug-
gests that we introduce the (nonunique) factorization
Pyjg — WoPy_1¥5 = LoSLG, where Lo is n x « and S
is an a X « signature matrix (notice that this deriva-
tion motivates the introduction of (6)). Hence we can

take B = HiLo. Moreover, we can now check that
R—-—ZRZ* =GJG*, where J=1& S and

1/2 0
€,0
H; Kpio H;Lg
Gg= | H:FYE,, HyFML,

HsFPK, o HsF? L,

We say that R is a Hermitian close-to-Toeplitz ma-
trix with respect to (£, J), and G is called a generator
matrix. Notice that the rows of G are closely related,
which is a consequence of the underlying state-space



model. The block-triangular factorization of close-to-
Toeplitz matrices, such as R, can be computed effi-
ciently (and recursively) by using the Schur reduction
procedure (Lev-Ari and Kailath, 1986), which reduces
to the following generator recursion: Gy = G,

0, =00 0, @, Ip
[ G ] _gzel[ L ]+zg,el[ o ]

where ®; is a J-unitary matrix chosen such that the
top p rows of G; (denoted by g;) are reduced to the
form ¢;®; = [ r; O ], where 7; is a p X p matrix.
Therefore, the generator Giy1 is obtained by multi-
plying G; by ®; and then shifting down the first p
columns of G;®; by p steps. We now apply this algo-
rithm to the generator of R. The first step involves
multiplying by ®¢, which is the identity matrix since
the first block-row of Gy already has a p x o block zero,
and shifting down the first block-column:

Ry HiLo
HiKpo  HoFWMIL,
H3FPL,

G1= HZF[I]I{'F’O

Let ®; be a J—unitary matrix such that

[ R} HiLo |®:1=[X 0]
Then we may check easily (as done before) that

1/2
@1 = RE_,_/I 0
HyK,, HsL,

RYS HiLo
HiK,o HeFUL,

where Py; — W1 Py o¥] = L1SLj. Therefore G101 is
equal to

R!? 0
Hz.[%-p’l H>L,
H;F®AK, . HyF»AL,

H4F[3’2]L1

H4F[3’2]K'p,1

where FI] = FyF;_ ... Fj. Next we shift down the
first p columns, form @2 and so on. We see that be-
cause of the special state-space structure of the el-
ements of the generator of R, there is significant re-
dundancy in the generator array: the first two nonzero
rows tell enough to fill out all other rows. That is
exactly the (Chandrasekhar algorithm) simplification
provided by the assumption of an underlying state-
space model. So the basic recursion is just the ex-

tended Chandrasekhar algorithm:

[ Ri’/l_z Hi1L; j|®'i _ [ 1_%:’/3,_1 0

= 7
Vit1Kp,i Fit1L; Kp,it1 Li+1:| @

RECURSIVE LEAST-SQUARES

We now consider an important special case of (5) that
arises in the recursive least—squares problem in adap-
tive filtering. The basic problem reads as follows:
Given pairs of data points, {u;,d(4)},, where u; is
a 1 x M row vector that consists of the values of M
input channels at time ¢,

unm (2) ] (8)

(d(%) and u;(3), s =1,..., M, are assumed scalar for

u; = [ ui(2)  u2(?)

Fig. 1. Linear least-squares estimator.

simplicity), we are required to determine (recursively)
the linear least-squares estimate of an M x 1 column
vector of unknown tap weights (see Fig. 1),
T
w = [ w1 w2 wm ] 3
so as to minimize the exponentially weighted error
sum:

N
min £ = minz /\N_i|d(i) — uiw|2, 0<A<1 (9)
The parameter A is often called the forgetting fac-
tor, since past inputs are (exponentially) weighted less

than the more recent values. We may rewrite E as fol-
lows

=XV 3

which shows that minimizing E is equivalent to the
following minimization problem:

) ww

d(i
(VA (VN

)

N
. , 2

min 1) — W;X; 10

min D vl — i (10)

where we defined the normalized quantities y(i) =



d(3)/(v/X)" and x; = w/(v/A)’. This simple manipu-
lation of the expression for the total error shows that
we can always rescale the original problem (9) (with
an exponential factor A) to another problem (10) with
A = 1. Now, the minimization in (10) may be easily
recast into a Kalman filtering problem by considering
the following M —dimensional state-space model

—1/2
xiq1 = AV

y(7)

Xi, Xo=w, Ilp=o0l
wixi +u(i), Bo(i)v"(§) =65  (11)

Let w; denote the weight vector estimate given the
input data up to time 4. This is clearly related to the
state-estimate X;1; = w;/(VA)*!, which is given by
Xo/-1 =0,

Rit1i = )\_1/25%1@‘71 + kiT;ilﬁ(i) (12)

where 6(2) = y(’L) - uif{iﬁ—ly ki = )\_1/2P,'|1'_1UZ,
re,i = 14+uiP;;_1u;, and P;;_, is the error covariance
matrix that satisfies the Riccati difference equation

Pii1ji = X1 [Piic1 — Ppicauir, jui Py (13)

Recursions (12) and (13), along with the expressions
for k; and 7. ;, constitute, apart from normalization,
the well known RLS algorithm. Indeed, the Kalman
filter variables {k;, 7., Pi+1;} are essentially scaled
versions of the RLS variables as usually described in
the literature. To clarify this point, if we apply the
matrix inversion lemma (see e.g. , (Kailath, 1980)) to
(13), then we readily conclude that

-1 -1 * -1
P = AP +HAwiu, By, =0

A Z Ai_jll;u]' = )\Qi

Jj=0

where ®; is usually referred to as the weighted auto-
correlation matrix (Haykin, 1991). If we define the
RLS variable P; = <I>i_1, then we get P; = AP q;-
Moreover, the a priori error e(i) = d(i) — u;w;—_1, is
clearly related to the innovation by (i) = e(i)/(v/2)*.
The a posteriori error eP(i) = d(i) — u;w;, may be
written as

e’(i) = d(i)— (\/X)i+1uiii+l\i
e(i) [1 = Vawkir, ] = e(i)r_}

That is, the conversion factor «;, which converts the
a priori error e(z) into the a posteriori error eP(i),
is given by v; = r;ll We may finally, rewrite the
Kalman filter equations in terms of the original RLS
variables:

w; = wi_1+ge(d), w.1=0
)\_1Pz'_1l.l*
. = IR el S 14
& 1+ A—luiPi_lu;‘ ( )
Pl' = )\71 [Pi_1 —_ giuiP,-_l] 5 P_1 = O'I

1

for 0 > 1, and where we defined g; = \/inr;i. In

summary, the Kalman variables and the RLS variables
are related as in TABLE 1. We remark that we do not
really need to rewrite the filter equations in terms of
the original RLS variables, since computing Z;;); is
enough for determining w;. We established the corre-
spondence between the Kalman and the RLS variables
for the sake of comparison with the expressions that
are usually described in the literature.

Table 1 Correspondence between the Kalman
and RLS variables.

KF RLS
y(i) d(i)/(VA)'
X; w/(\/X)l
Rit1)i wi/ (V)T
APi1): P =9,!
Vakr, ! 8i
6(1'2 e(i)/(VA)*
re % Vi

For a variety of reasons, it is sometimes preferable
to start the recursive algorithm with a non-zero ini-
tial value w_;. This allows for instance, to change
the tracking capability of the algorithm. It also al-
lows to start the adaptive scheme with an initial guess
obtained from a gradient-based method, such as the
LMS algorithm (see (Haykin, 1991) for a related dis-
cussion). This change may be incorporated into our
derivation by redefining the total error criterion (9):

€= (w—w)Ty" (w—%)+ Y AVd(i) — ww/’

i=0

with w = Ew, E(w — w)(w — w)* = IIp. The
state-space model (11) remains unchanged except for
the new value of IIp. Moreover, we now use the fil-
ter equations (12-13) with the new initial conditions

Py_; = IIp and %Xg—; = w_1 = W (we now have
-1 _ i+l —1
P =A% + MO

FAST RECURSIVE LEAST SQUARES

‘We showed in the previous section that the RLS adap-
tive algorithm can be obtained by setting up a suit-
able state-space model (11), and by using the Riccati-
based Kalman filter recursions (12-13). The state-
space model we set up has special structure: F =
)\_1/2I,G =0,Q =0, and R = 1 are constant, while
H; = u; is not. We now further assume that the input
channels {wi(.),u2(.),...,unm(.)} have a shift struc-
ture in the following sense: u;(¢) = uj—1(i —1). If we
denote the value of the first channel at time ¢ by (),
then this corresponds to having an input row u; of the
form



w = [ u(i) u@-—1) u(i— M +1) ] (15)

The shift structure in u; suggests that we might be
able to get fast RLS algorithms by using the extended
Chandrasekhar recursions in place of the Riccati re-
cursions. In fact this is true, and many results in
the literature can be obtained in a more transparent
(square-root array) form, and many variations and ex-
tensions derived in this way. To exploit the shift struc-
ture in wu;, we consider the following (N + 1)— (not
M —) dimensional state-space model

xit1 = AN Y’xi, xo= [ ‘g ]
y(i) = hixi+ov(i), Ev(i)v'(§) =6y  (16)

where x; is now an (N+1) x 1 state-vector with trailing
zeros (added for convenience), and

hi =[ u(@) w(i-—1) u(0) On—; |

isa 1x (IN+1) row vector. An initial state covariance
matrix (with trailing zeros) is assumed, viz.,

1I,

E(Xo — )_(0)()(0 — )_(0)* = [ 0

0| _
0 ] =10

where Iy is an M x M positive definite matrix. The
Kalman equations of the previous section can now be
rewritten as

Rit1)s = A_l/zfcmfl + kirf_’il [y(l) — hiiih‘fl]
_ * _y—1/2 *
re,i = 1+hiP;_1hi, ki=X " "F;_1h;

Py = At [Pi|z'—1 - P¢|i—1hZT;¢1hiPi|i—1] (17)

with Py _; = IIp @ 0. The gain vector kpi = kir;;/z
also has trailing zeros, k},; = [ c; O ], say. The

computational complexity of the RLS algorithm is
O(M?) operations (multiplications and additions) per
time step. However, though time-variant, the spe-
cial structure of h;, viz., h; = h;{1Z, may be fur-
ther exploited to reduce the operation count to O(M),
where Z denotes the shift matrix with ones on the
first subdiagonal. Observe that this relation (along
with Fy1Z = ZF;, since F; = A\~/2I) shows that
the state-space model (16) is indeed structured. The
reduction in operation count can be now achieved by
using the extended Chandrasekhar recursions (7) with
U, =2, F,=X"Y%], G; =0. To apply these recur-
sions, we first introduce the (nonunique) factorization

LOSLB = Pl\O - ZP0|—1Z* =

1 I, 0 - s I, O N
where Lo and S are (N + 1) X o and o X o ma-
trices respectively. The factor Lo is of the form
Ly =[ Ly 0], where Lo is (M + 1) x . Let h;
be the row vector of the first M + 1 coefficients of h;.

Writing down the extended Chandrasekhar recursions
(7) we obtain

T:’/iz l~11'+1[~1i rel,/ii-l 0
0 ©:i =
1/ ¢ =
[ < ] AY2L, [ ’a’l ] Lita

where ®; is any J = (1 & S)—unitary matrix that
produces the zero entry on the right hand-side of the
above expression. The computational complexity of
each step is O(aM), where the value of a depends
on the choice of IIy. This recursion is a square-root
version of fast RLS algorithms discussed in the litera-
ture (Carayannis, Manolakis and Kalouptsidis, 1983;
Cioffi and Kailath, 1984). We note that the rota-
tion ®; may be implemented in a variety of ways
such as: elementary rotations, Householder transfor-
mations, square-root and/or division-free rotations,
etc.. These may differ in computational complexity,
numerical behaviour, and ease of hardware (VLSI) im-
plementation. We also remark that explicit expres-
sions for @; can be written down in each case, leading
to various explicit sets of equations.

In the prewindowed case u(i) = 0 for ¢ < 0. This

implies kp,0 =0 and Pyjo — ZPy_1Z" =

L[ o M, 0] .
A [0 0]—2[0 O]Z (18)

A convenient choice is TIp = diag {\,\?,..., M},
which leads to @ = 2, and we may choose S =1&® —1,
and

;_[ro .0 o "
°= 10 0 ... 0 M2

In the covariance case (where the past data {u(—M +
1),...,u(—1),u(0)} is assumed available), and for the
same choice of IIp, we get @ = 3 (see (Sayed and
Kailath, 1992) for more details). We also remark that
other choices of Il give other values of a.

EXTENSIONS AND CONCLUDING
REMARKS

Recall that at the beginning of the last section we as-
sumed that the channel inputs obey a shift structure,
viz., u;(¢) = w;j—1(¢ — 1). This reflected into a special
structured state-space model (16) with h; = h; ;7.
Our derivation, however, makes it clear that we can
also obtain fast algorithms for other cases where the
input channels do not necessarily exhibit a shift struc-



ture, the case usually considered in the literature. For
example, if the input vector u; in (8) satisfies a re-
lation of the form w; = w;+1V¥, for some constant
matrix ¥, then the state-space model (11) is also
structured, and we may write down the corresponding
extended Chandrasekhar recursions. For matrices ¥
that are relatively sparse, in the sense that Wky; re-
quires O(M) operations, and for appropriate choices
of Iy, we are also led to a fast RLS algorithm.
Moreover, the state-space model for the RLS prob-
lem ((11) or (16)) has a row H matrix, whereas our
derivation allows for models with more general matri-
ces H. Such models arise for example, in the mul-
tichannel, multidimensional and/or nonlinear adap-
tive problems, where in many instances, choice of ¥
with a block shift structure is convenient, such as:
UV=ZBZ®...dZ. The details of all these connec-
tions will be discussed elsewhere.
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