
ADAPTIVE ESTIMATION ALGORITHMS OVER DISTRIBUTED NETWORKS

Ali H. Sayed and Cassio G. Lopes

Department of Electrical Engineering
University of California
Los Angeles, CA, 90095

ABSTRACT

We provide an overview of adaptive estimation algorithms over
distributed networks. The algorithms rely on local collaborations
and exploit the space-time structure of the data. Each node is al-
lowed to communicate with its neighbors in order to exploit the
spatial dimension, while it also evolves locally to account for the
time dimension. Algorithms of the least-mean-squares and least-
squares types are described. Both incremental and diffusion strate-
gies are considered.

1. INTRODUCTION

Distributed networks linking PCs, laptops, cell phones, sensors
and actuators will form the backbone of future data communica-
tion and control networks. Applications will range from sensor
networks to precision agriculture, environment monitoring, disas-
ter relief management, smart spaces, target localization, as well as
medical applications [1]–[4]. In all these cases, the distribution of
the nodes in the field yields spatial diversity, which should be ex-
ploited alongside the temporal dimension in order to enhance the
robustness of the processing tasks and improve the probability of
signal and event detection [1].

Distributed processing deals with the extraction of information
from data collected at nodes that are distributed over a geographic
area. For example, each node in a network of nodes could collect
noisy observations related to a certain parameter of interest. The
nodes would then interact with each other in a certain manner, as
dictated by the network topology, in order to arrive at an estimate
of the parameter. The objective is to arrive at an estimate that is as
accurate as the one that would be obtained if each node had access
to the information across the entire network. [1, 5].

1.1. Example

Consider a collection of N nodes spread over a geographic area,
as shown in Fig. 1. Each node has access to a local temperature
measurement Ti and the objective is to provide the nodes with
information about the average temperature T̄ across the network.

In a centralized solution, the nodes would send their tempera-
ture measurements to a central processor, which would then aver-
age these measurements and compute T̄ . The average temperature
would subsequently be communicated back to the nodes. In one

This material was based on work supported in part by the National
Science Foundation under award ECS-0601266. The work of C. G. Lopes
was also partially supported by a fellowship from CAPES, Brazil, under
award 1168/01-0. This survey article is based on the works appearing in
the publications [12]–[15].

Fig. 1. A distributed network with N nodes accessing temperature
data.

distributed solution (known as a consensus implementation) each
node combines the measurements from its immediate neighbors
(those that are connected to it). The result of the combination be-
comes this node’s new measurement. For example, for node 1 we
would have

x1(i) ← α1x1(i−1)+α2x2(i−1)+α5x5(i−1) (for node 1)

where x1(i) denotes the updated measurement of node 1 at iter-
ation i, and the α′s are appropriately chosen coefficients. Every
other node in the network performs the same operation. Under
suitable conditions on the α′s, all node measurements will con-
verge asymptotically to the desired average temperature T̄ . This
consensus implementation requires only local communications. It
also requires that each node performs several iterations before its
updated measurement approaches the desired average temperature.

1.2. Incremental and Diffusion Strategies

Obviously, the effectiveness of any distributed implementation will
depend on the modes of cooperation that are allowed among the
nodes. Figure 2 illustrates three such modes of cooperation.

In an incremental mode of cooperation, information flows in a
sequential manner from one node to the adjacent node. This mode
of operation requires a cyclic pattern of collaboration among the
nodes, and it tends to require the least amount of communications
and power [5, 6, 7]. In a diffusion implementation, on the other
hand, each node communicates with all its neighbors as dictated
by the network topology. The amount of communication in this
case is higher than in an incremental solution. Nevertheless, the
nodes have access to more data from their neighbors. The commu-
nications in the diffusion implementation can be reduced by allow-
ing each node to communicate only with a subset of its neighbors.

Fig. 2. Three modes of cooperation.

In this mode of cooperation the choice of which subset of neigh-
bors to communicate with can be randomized according to some
performance criterion, constituting a probabilistic diffusion imple-
mentation.

1.3. Distributed Strategies

The temperature example that we mentioned before is a special
case of a strategy for distributed processing known as consensus
(e.g., [8, 9, 10]). Broadly, consensus functions as follows. Assume
the network is interested in estimating a certain parameter. Each
node collects observations over a period of time and reaches an
individual decision about the parameter. During this time, there
is limited interaction among the nodes; the nodes act more like
individual agents. Following this initial stage, the nodes combine
their estimates through several consensus iterations and generally
converge asymptotically close to the desired (global) estimate of
the parameter – see Fig. 3.

Distributed nodes
Nodes react to local data

Nodes interact to reach

consensus

Nodes react to local data

Fig. 3. An illustration of a consensus implementation.

Let us consider another example of a consensus implementa-
tion, which will serve as further motivation for the contributions in
this presentation. Consider again a collection of nodes. Each node
has access to a data vector yk and a data matrix Hk. The yk are
noisy and distorted measurements of some unknown vector wo:

yk = Hkwo + vk

Each node can evaluate the least-squares estimator of wo based
on its own local data {yk, Hk}. To do so, each node evaluates its
local cross-correlation vector θk = H∗

kyk and its auto-correlation
matrix Rk = H∗

kHk. Then the local estimate of wo can be found
from ŵk = R−1

k θk. This operation requires that each node col-
lects sufficient data into yk and Hk. Once the local quantities

{θk, Rk} have been evaluated at the individual nodes, one can ap-
ply consensus iterations at the nodes to converge to the average
quantities [11]:

R =
1

N

NX
k=1

Rk and θ =
1

N

NX
k=1

θk

The global estimate of wo is given by ŵ = R̂−1θ̂.
For all practical purposes, a least-squares implementation in

this manner is a non-recursive (or non-adaptive) solution. For ex-
ample, if a node collects one more entry in yk and one more row in
Hk, the consensus iterations will need to be repeated afresh instead
of being updated. In addition, the block averaging procedure limits
the ability of the consensus-based solution to track fast-changing
environments, especially in networks with limited communication
resources.

1.4. Adaptive Networks

Motivated by these observations, we review in this article dis-
tributed algorithms that enable a network of nodes to function as
an adaptive entity in its own right following the works [12]–[15].
In order to clarify what we mean by an adaptive network, let us
first review the structure of a traditional adaptive filter. As is well
known, and as shown in Fig. 4, an adaptive filter is generally a
digital filter that changes its internal structure in response to an ex-
citation and a reference signal. At each time instant, the filter com-
pares its output to a reference signal and generates an error signal.
The filter then adjusts its coefficients depending on whether the
error is large or small. Thus, the key fact to note is that a regular

Filter
Input signal

Reference
signal

Error signal

Fig. 4. An adaptive filter structure.

adaptive filter responds in real-time to its data and to variations in
the statistical properties of this data. We want to extend this ability
to the network domain. By an adaptive network we mean an inter-
connected structure of adaptive nodes that is able to respond to
data in real-time and to track variations in the statistical properties
of the data as well. As a result, in an adaptive network, whenever
information arrives at a particular node, the information creates a
ripple effect throughout the network and it influences the perfor-
mance and behavior of the other nodes as dictated by the network
topology. Let us illustrate the concept of an adaptive network by
reconsidering the earlier example of Fig. 3.

Consider again a collection of nodes and assume the network
is required to estimate a certain parameter of interest – see Fig. 5.
In an adaptive network, each node collects local observations and
at the same time interacts with its immediate neighbors. At every
instant, the local observation is combined with information from
the neighboring nodes in order to improve the estimate at the local
node. By repeating this process of simultaneous observation and
consultation, the nodes are constantly exhibiting updated estimates
that respond to observations in real time.

Distributed nodes

Nodes react to local data

and interact

Nodes react to local data

and interact

Fig. 5. An illustration of an adaptive network strategy.

1.5. Notation

We use boldface letters for random quantities and normal font for
non-random (deterministic) quantities. We also use capital letters
for matrices and small letters for vectors. For example, d is a ran-
dom quantity and d is a realization or measurement for it, and R
is a covariance matrix while w is a weight vector. The notation
∗ denotes complex conjugation for scalars and complex-conjugate
transposition for matrices.

2. INCREMENTAL LMS SOLUTION

Consider a network with N nodes (see Fig. 6). Each node k has
access to time-realizations {dk(i), uk,i} of zero-mean spatial data
{dk, uk}, k = 1, . . . , N , where each dk is a scalar measurement
and each uk is a 1 × M row regression vector. We collect the
regression and measurement data into two global matrices:

U ∆
= col{u1, u2, . . . , uN} (N ×M) (1)

d ∆
= col{d1, d2, . . . , dN} (N × 1) (2)

These quantities collect the data across all N nodes. The objective
is to estimate the M × 1 vector w that solves

min
w

J(w) (3)

where the cost function J(w) denotes the mean-square error:

J(w) = E‖d− Uw‖2 (4)

and E is the expectation operator. The optimal solution wo of (3)
satisfies the normal equations [16]:

Rdu = Ruwo (5)

which are defined in terms of the correlation and cross-correlation
quantities:

Ru = E U∗U (M ×M) , Rdu = E U∗d (M × 1) (6)

If the optimal solution wo were to be computed from (5), then
every node in the network would need to have access to the global
statistical information {Ru, Rdu}. Alternatively, the solution wo

could be computed centrally and the result broadcast to all nodes.
Either way, these approaches drain considerable communications

Fig. 6. A distributed network with N active nodes accessing space-
time data.

and computational resources and they do not endow the network
with the necessary adaptivity to cope with possible changes in the
statistical properties of the data. We shall instead describe dis-
tributed solutions that allow cooperation among the nodes through
limited local communications, while at the same time equipping
the network with adaptive mechanisms [12]–[15].

2.1. Steepest-Descent Solution

To begin with, note from (4) and (6) that the cost function J(w)
can be decomposed as

J(w) =

NX
k=1

Jk(w) (7)

where each Jk(w) is given by

Jk(w)
∆
= E|dk − ukw|2
= σ2

d,k −Rud,kw − w∗Rdu,k + w∗Ru,kw (8)

and the second-order moment quantities are defined by

σ2
d,k = E|dk|2, Ru,k = E u∗kuk and Rdu,k = E dku∗k (9)

In other words, J(w) can be expressed as the sum of N indi-
vidual cost functions Jk(w), one for each node k. There have
been extensive works in the literature on incremental methods for
solving such optimization problems in a distributed manner (e.g.,
[5, 6, 17, 18]). Essentially, whenever a cost function can be decou-
pled into a sum of individual cost functions, a distributed algorithm
can be developed for minimizing the cost function through an in-
cremental procedure. We explain the procedure as follows in the
context of mean-square-error estimation.

Thus recall that the traditional iterative steepest-descent solu-
tion for determining wo can be expressed in the form:

wi = wi−1 − µ [∇J(wi−1)]
∗ , (10)

= wi−1 + µ

NX
k=1

(Rdu,k −Ru,kwi−1) (11)

where µ > 0 is a suitably chosen positive step-size parameter, wi

is an estimate for wo at iteration i, and ∇J(wi−1) denotes the
gradient vector of J(w) w.r.t. w evaluated at wi−1. An equivalent
implementation can be motivated as follows.

Let us define a cycle visiting every node over the network
topology only once, such that each node has access only to its

immediate neighbor node in this cycle and let ψ
(i)
k denote a local

estimate of wo at node k at time i. Thus assume that node k has ac-
cess to ψ

(i)
k−1, which is an estimate of wo at its immediate neighbor

node k− 1 in the defined cycle (see Fig. 7). If at each time instant
i, we start with the initial condition ψ

(i)
0 = wi−1 at node 1 (i.e.,

with the current global estimate wi−1 for wo), and iterate cyclicly
across the nodes then, at the end of the procedure, the local esti-
mate at node N will coincide with wi from (10), i.e., ψ

(i)
N = wi.

In other words, the following implementation is equivalent to (10):8><>: ψ
(i)
0 = wi−1

ψ
(i)
k = ψ

(i)
k−1 − µk [∇Jk(wi−1)]

∗ , k = 1, . . . , N

wi = ψ
(i)
N

(12)

observe that in this steepest-descent implementation, the iteration
for ψ

(i)
k is over the spatial index k.

2.2. Steepest-Descent Solution

Although recursion (12) is cooperative in nature, with each node
k using information from its immediate neighbor (represented by
ψ

(i)
k−1), this implementation still requires the nodes to have access

to the global information wi−1 in order to evaluate ∇Jk(wi−1).
In order to resolve this difficulty and arrive at a distributed

implementation, we rely on incremental techniques. If each node
evaluates the required partial gradient∇Jk(·) at the local estimate
ψ

(i)
k−1 received from node k − 1, as opposed to wi−1, then an in-

cremental version of algorithm (12) would result, namely,8><>:
ψ

(i)
0 = wi−1

ψ
(i)
k = ψ

(i)
k−1 − µk

h
∇Jk(ψ

(i)
k−1)

i∗
, k = 1, . . . , N

wi = ψ
(i)
N

(13)

This cooperative scheme relies only on locally available informa-
tion, leading to a truly distributed solution. The scheme requires
each node to communicate only with its immediate neighbor, thus
saving on communication and energy resources [5, 6, 19].

2.3. Incremental Adaptive Solution

The incremental solution (13) relies on knowledge of the second-
order moments Rdu,k and Ru,k, which are needed to evaluate the
local gradients ∇Jk. An adaptive implementation of (13) can be
obtained by replacing the second-order moments {Rdu,k, Ru,k}
by instantaneous approximations, say of the LMS type, as follows

Rdu,k ≈ dk(i)u∗k,i , Ru,k ≈ u∗k,iuk,i (14)

by using data realizations {dk(i), uk,i} at time i. The approxima-
tions (14) lead to an adaptive distributed incremental algorithm, or
simply a distributed incremental LMS algorithm of the form [12]–
[15]:

For each time i ≥ 0, repeat:8>>><>>>:
ψ

(i)
0 = wi−1

ψ
(i)
k = ψ

(i)
k−1 + µku∗k,i

�
dk(i)− uk,iψ

(i)
k−1

�
k = 1, . . . , N

wi = ψ
(i)
N

(15)

Fig. 7. Data processing in the incremental adaptive LMS solution.

3. INCREMENTAL LEAST-SQUARES SOLUTIONS

The use of LMS-type distributed algorithms eliminates the need
to embed powerful processors at the nodes. However, as available
processors continuously decrease in cost and increase in compu-
tational capability, one may consider equipping the network with
more sophisticated adaptation rules. We now describe an incre-
mental RLS implementation [14].

Again, each node k has access to regressor and measurement
data uk,i and dk(i), k = 1, . . . , N . At each time instant i, the
entire network has access to space-time data

yi =

26664
d1(i)
d2(i)

...
dN (i)

37775 and Hi =

26664
u1,i

u2,i

...
uN,i

37775 . (16)

Here yi and Hi are snapshot matrices unveiling the network data
status at time i. We then formulate an exponentially weighted reg-
ularized least-squares (LS) problem [16], where the weight vector
estimate wi is found by solving:

min
w

�
λi+1w∗Πw +

�Yi −Hiw
�∗Wi

�Yi −Hiw
��

(17)

and the weighting matrix is given by

Wi = diag{λiD, λi−1D, · · · , λD, D} (18)

with a spatial weighting matrix

D = diag{γ1, γ2, · · · , γN} (19)

and a (time) forgetting factor

0 ¿ λ ≤ 1. (20)

Moreover, Yi and Hi collect all the data blocks available from the
beginning of the observation period up to current time

Yi =

26664
y0

y1

...
yi

37775 and Hi =

26664
H0

H1

...
Hi

37775 . (21)

The global data matrices Yi and Hi exhibit space-time struc-
ture, which naturally suggests a distributed solution. An algorithm
that updates wi recursively and in a distributed fashion is given by
[14]:

Fig. 8. The cooperation strategy of the exact distributed RLS al-
gorithm (dRLS) described by (22).

ψ
(i)
0 ← wi−1; P0,i ← λ−1Pi−1

for k = 1 : N

ek(i) = dk(i)− uk,iψ
(i)
k−1

ψ
(i)
k = ψ

(i)
k−1 +

Pk−1,i

γ−1
k

+uk,iPk−1,iu∗
k,i

u∗k,iek(i)

Pk,i = Pk−1,i − Pk−1,iu∗k,iuk,iPk−1,i

γ−1
k

+uk,iPk−1,iu∗
k,i

end

wi ← ψ
(i)
N ; Pi ← PN,i .

(22)

Note that in algorithm (22) the iterations are performed over the
spatial index k, therefore a path is induced across the network,
along which wi−1 is spatially updated by sequentially visiting ev-
ery node once. At each time i, the estimate ψ

(i)
k at node k is the

LS solution considering data blocks Yi−1 and Hi−1 in addition to
the data collected along the path. At the end of the cycle, ψ

(i)
N will

contain precisely the desired solution wi. If we start from i = 0
with w−1 = 0 and P−1 = Π−1 and repeatedly apply (22) taking
into account sequentially all the data blocks up to time i, then by
induction ψ

(i)
N (or wi) will be the solution to the global LS problem

(17). Figure 8 depicts the structure of the incremental implemen-
tation, in which both ψ

(i)
k and Pk,i are transmitted to the next node

in the path. This distributed implementation saves communication
and energy resources in comparison to consensus-based strategies
[11].

A simplification that requires less communications while keep-
ing the performance close to the exact implementation can be ob-
tained as follows. We allow collaboration for the estimates while
keeping the matrices Pk,i evolving locally and independent from
the neighbor nodes. This would lead to the following algorithm
[14]:

ψ
(i)
0 ← wi−1; P0,i ← λ−1Pi−1

for k = 1 : N

ek(i) = dk(i)− uk,iψ
(i)
k−1

ψ
(i)
k = ψ

(i)
k−1 +

Pk,i−1

γ−1
k

+uk,iPk,i−1u∗
k,i

u∗k,iek(i)

Pk,i = Pk,i−1 − Pk,i−1u∗k,iuk,iPk,i−1

γ−1
k

+uk,iPk,i−1u∗
k,i

end

wi ← ψ
(i)
N ; Pi ← PN,i .

(23)

Algorithm (23) iterates the estimates ψ
(i)
k over space, while

Pk,i is iterated over time with local data only. As a consequence
it requires transmission complexity O(M) as opposed to O(M2)
for (22). Figure 9 presents the algorithm’s collaboration strategy,
in which estimates are shared along the path and matrices Pk,i

evolve locally.

Fig. 9. The cooperation strategy of the low communications dis-
tributed RLS algorithm (LC-dRLS).

4. DIFFUSION LMS SOLUTION

When more communication resources are available, we may take
advantage of the network connectivity and devise more sophisti-
cated peer-to-peer cooperation rules. We describe one such diffu-
sion protocol here [13, 15] – see Fig. 10. The neighborhood of a
node k is the set of nodes directly connected to it, including itself.
Each individual node k consults peer nodes from its neighborhood
and combines their past estimates {ψ(i−1)

` ; ` ∈ Nk(i − 1)} with
its own past estimate ψ

(i−1)
k . The node generates an aggregate es-

timate φ
(i−1)
k and feeds it in its local adaptive filter. The strategy

can be expressed as follows for LMS-type recursions:

φ
(i−1)
k = fk

�
ψ

(i−1)
` ; ` ∈ Nk(i− 1)

�
ψ

(i)
k = φ

(i−1)
k + µu∗k,i

�
dk(i)− uk,iφ

(i−1)
k

�
(24)

for some local combiner fk (·). The combiners can be nonlinear or
even time-variant, to reflect, for instance, changing topologies or
to respond to non-stationary environments. One simple combining
rule is to average the local and neighbors’ previous estimates, i.e.,

φ
(i−1)
k =

X
`∈Nk

a(k, `) ψ
(i−1)
`

ψ
(i)
k = φ

(i−1)
k + µu∗k,i

�
dk(i)− uk,iφ

(i−1)
k

�
(25)

where a(k, `) = 1/deg(k), with deg(k) denoting the degree of
node k (number of incident links at this node, including itself).
This scheme exploits network connectivity more fully, leading to

Fig. 10. A network with diffusion cooperation strategy.

1

2

3

45
6

7

8

9

10

11
12 13

14

15

5 10 15
0

0.2

0.4

0.6

0.8

1

Node k
N

et
w

or
k

S
ta

tis
tic

s

α
k σ

u,k
2

σ
v,k
2

Fig. 11. Network Topology and Statistical profile.

500 1000 1500 2000 2500
−40

−30

−20

−10

0

Time i

ζ g(i)

−

E
M

S
E

 g
lo

ba
l

 (
dB

)

No Coop (1)
Diffusion (2)

(1)

(2)

5 10 15
−60

−50

−40

−30

−20

Node k

ζ k(∞
)

 −

E
M

S
E

 p
er

 n
od

e
 (

dB
)

No Coop
Diffusion

Fig. 12. Transient global EMSE and steady-state EMSE per node.

more robust algorithms. If links or nodes eventually fail, the adap-
tive network can react by relying on the remaining topology. Note
that the adaptive network would work even for non-connected graphs,
relying on the individual agents. Furthermore, since more infor-
mation is aggregated in the local adaptive filter updates, individual
nodes can attain better learning behavior when compared to the
non-cooperative case, provided that the combiners fk are well de-
signed.

In order to illustrate the adaptive network performance, we
present a simulation example in Figs. 11 and 12. Fig. 11 de-
picts the network topology and the network statistical profile. The
regressors follow a first order Markov process with power σ2

u,k

and correlation index αk. The background noise power is denoted
by σ2

v,k. Note how the diffusion protocol outperforms the non-
cooperative case. Fig. 12, left plot, presents the average global ex-
cess mean-square error (EMSE), defined as ζg(i) = 1

N

PN
k=1 ζk(i),

where the individual EMSE at node k is depicted in the right plot
and is defined as ζk(i) = E|uk,i(w

o −ψ
(i−1)
k)|2.

5. CONCLUDING REMARKS AND FUTURE WORK

We have described several distributed and cooperative algorithms
that endow distributed networks with learning abilities. They ad-
dress distributed estimation problems that arise in a variety of ap-
plications, such as environment monitoring, target localization and
potential sensor network problems [1].

For low energy profile implementations, the incremental LMS
algorithm performs well. As the available resources increase, more
sophisticated learning rules, such as recursive least-squares, can
help speed network convergence. Still, with the increase in the
size of networks, setting a cycle may not be a trivial task. In order
to alleviate topology constraints and exploit more fully network
connectivity, diffusion protocols can be developed. They give rise
to peer-to-peer estimation protocols that exploit spatial diversity,
improve robustness, and benefit the network in terms of estimation
performance in comparison to the non-cooperative case. Diffusion

protocols may also be extended to the RLS case.
An interesting extension of the diffusion protocol is to develop

an extra layer over the existing adaptive network, in which the
nodes are weighted according to their respective performance, in-
stead of a blind aggregation of peer neighbors’ estimates.

6. REFERENCES

[1] D. Estrin, G. Pottie and M. Srivastava, “Intrumenting the world with
wireless sensor setworks,” Proc. ICASSP, Salt Lake City, UT, May
2001, pp. 2033-2036.

[2] D. Li, K. D. Wong, Y. H. Hu and A. M. Sayeed, “Detection, classi-
fication, and tracking of targets,” IEEE Signal Processing Magazine,
vol. 19, Issue 2, March 2002, pp. 17-29.

[3] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A sur-
vey on sensor networks,” IEEE Communications Magazine, vol. 40,
Issue 8, August, 2002, pp. 102-114.

[4] D. Culler, D. Estrin and M. Srivastava, “Overview of sensor net-
works,” Computer, vol. 37, No. 8, Aug. 2004, pp. 41-49.

[5] M. G. Rabbat and R. D. Nowak, “Quantized incremental algorithms
for distributed optimization,” IEEE Journal on Selected Areas in
Communications, vol.23, April 2005, No.4, pp. 798-808.

[6] D. Bertsekas, “A new class of incremental gradient methods for least
squares problems,” newblock SIAM J. Optim., vol.7, No. 4, Nov.
1997, pp. 913-926.

[7] A. Nedic and D. Bertsekas, “Incremental subgradient methods for
nondifferentiable optimization,” SIAM J. Optim., vol. 12, No. 1,
2001, pp. 109-138.

[8] J. Tsitsiklis and M. Athans, “Convergence and asymptotic agreement
in distributed decision problems,” IEEE Transactions on Automatic
Control, vol. AC-29, No. 1, Jan. 1984, pp. 42-50.

[9] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks
of agents with switching topology and time-delays,” IEEE Transac-
tions on Automatic Control, vol. 49, Issue 9, Sept. 2004, pp. 1520-
1533.

[10] L. Xiao and S. Boyd, “Fast linear iterations for distributed averag-
ing,” Systems and Control Letters, vol. 53, Issue 1, Sep. 2004, pp.
65-78.

[11] L. Xiao, S. Boyd, and S. Lall, “A scheme for robust distributed sensor
fusion based on average consensus,” Fourth Internation Symposium
on Information Processing in Sensor Networks, Los Angeles, CA,
Apr. 2005, pp. 63-70.

[12] C. Lopes and A. H. Sayed, “Distributed adaptive incremental
strategies: formulation and performance analysis,” Proc. ICASSP,
Toulouse, France, May 2006, vol. 3, pp. 584–587.

[13] C. G. Lopes and A. H. Sayed, “Distributed processing over adaptive
networks,” Proc. Adaptive Sensor Array Processing Workshop, MIT
Lincoln Lab., Lexington, MA, June 2006.

[14] A. H. Sayed and C. Lopes, ”Distributed recursive least-squares strate-
gies over adaptive networks,” Proc. 40th Asilomar Conference on
Signals, Systems and Computers, Pacific Grove, CA, October 2006.

[15] C. G. Lopes and A. H. Sayed, ”Incremental adaptive strategies over
distributed networks,” submitted for publication.

[16] A. H. Sayed. Fundamentals of Adaptive Filtering. Wiley, NJ, 2003.
[17] J. Tsitsiklis, D. P. Bertsekas and M. Athans, “Distributed asyn-

chronous deterministic and stochastic gradient optimization algo-
rithms,” IEEE Transactions on Automatic Control, vol. AC-31, No.
9, Sept. 1986, pp. 650-655.

[18] B. T. Poljak and Y. Z. Tsypkin, “Pseudogradient adaptation and train-
ing algorithms” Automatic and Remote Control, vol. 12, 1973, pp.
83-94.

[19] M. G. Rabbat and R. D. Nowak, “Decentralized source localization
and tracking,” Proc. ICASSP, Montreal, Canada, May 2004, vol. III,
pp. 921-924.

