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ABSTRACT In previous work [ 11, we have proposed an 
adaptive sigma delta modulator with improved dynamic 
range. The modulator adapts the step-size of the quantizer 
from estimates of the quantizer input. In this paper, we 
conduct a stability analysis of the new modulator. 

1. INTRODUCTION 

Adaptive Sigma Delta Modulation (ASDM) attempts to in- 
crease the dynamic range of sigma delta modulators while 
keeping the quantization noise as low as possible. ASDM 
achieves this objective by scaling either the input signal or 
the step-size of the quantizer through an estimation of the 
input signal strength. This estimation can be done from the 
input signal itself or from the modulator output as shown 
in Figure 1. Input scaling is shown in part a of the figure 
while step-size scaling is shown in part b. Using the input 
signal to perform the estimation is known as forward esti- 
mation while using the output signal is known as backward 
estimation. Adaptation could be done continuously or spo- 
radicaly in time. Moreover, the value of the adaptation 
signal d ( n )  could be continuous in amplitude or restricted 
to a specific range of values. 
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Figure 1: Adaptation schemes used in conventional 

Several adaptation techniques have been investigated in 
the literature [2]-[6]. We developed an alternative scheme 
for adapting the quantization step-size in [I]. The scheme 
is based on estimating the amplitude of the quantizer in- 
put instead of the input signal itself. This estimate is then 
used to adapt the step size of the quantizer. In this paper, 
we perform a stability analysis of this proposed adaptive 
modulation structure. 

2. NEW ASDM STRUCTURE 

Figure 2 shows the basic structure of the proposed adap- 
tive SDM with one bit quantizer from [ 13. The modulation 
and demodulation blocks are shown in parts a and b, re- 
spectively. Higher-order ASDMs can be implemented by 
replacing the integrator by higher-order noise shaping fil- 
ters. Furthermore, multi-loop and multi-stage adaptors can 
be adopted to improve the performance of the modulator. 
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Figure 2:  Block diagram of the proposed structure. a. 
Modulator b. Demodulator. 

The error signal e,(n) is given by 

e,(n) = z(n)  - v(n - I), (1) 
ASDM’s. a. Input scaling b. Quantizer step-size scaling. 

1 2 9  which is passed through the noise shaping filter H ( z ) .  As 
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3.1. Equivalent Structure of the IModulator 

Consider the modulator shown in Figure 2 with the adapter 
shown in Figure 3. Taking the logarithm of both sides of 
equation (6) we get 

Figure 3: Adaptation scheme of the proposed modulator. 

p ( n )  = p ( n  - 1) + e,(n) with p ( 0 )  = 0. (2) 

The filter outputp(n) is quantized using a one-bit quantizer 
to produce the signal y(n). In other words, 

The one-bit DAC is assumed to be ideal and thus has a 
unity transfer function. 

The adapter generates a scaling signal d ( n ) ,  which is 
an approximation of the amplitude of the quantizer input 
signal p ( n ) .  The encoded signal U(.) is then given by 

4.) = y(n)d(n). (4) 

Notice that if d ( n )  = Ip(n)l then we shall have 

V ( z ) / X ( z )  = 1. (5) 

The adaptation block used in this study is shown in Figure 
3, which is similar in structure to a delta modulator with an 
additional exponent term CY. The purpose of this additional 
term is to increase the tracking capability of the adapter. 

The adaptation signal d(n) is constructed as follows: 

d ( n )  = aq(")d(n - 1), (6) 

where the binary sequence q(n) is generated from 

(7) +1, if Ip(n)l > d ( n  - I), 
-1, otherwise. 

In other words, 

The two binary sequences y(n) and q(n) are carried out 
to the demodulation part as shown in Figure 2b. There, the 
signal U(.) is reconstructed using equations (4) and (6). 
Finally, the reconstructed signal is filtered using a low-pass 
filter as usually done in conventional sigma delta modula- 
tors. 

3. STABILITY ANALYSIS OF THE MODULATOR 

In this section the stability of the new modulator is ana- 
lyzed. The analysis is restricted to the case where H ( z )  is 
a simple integrator as in (2). 

log,(d(n)) = log,(d(n -- 1)) + dn) .  (9) 
Using the fact that the logarithm is an increasing function, 
we can write 

Now let 

and 
ydn)  a log,(d(n)). (12) 

From equations (9)-( 12) we get 

yd(n)  = Yd(n - 1) + sign [zd( 'a)  - Yd(n - I)]. (13) 

This dynamic equation characterixes a delta modulator as 
illustrated in Figure 4 part a. Its linearized version is shown 
in part b. 
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Figure 4: A Delta Modulator. a .  Typical b. Linearized 

Therefore, we can redraw the adapter of Figures 2 and 
3 in an equivalent form utilizing equations (11)-(13), as 
shown in Figure 5.  The adaptation block together with the 
quantizer of the modulator now look like a log-PCM [7], 
except that the PCM block is replaced by a delta modulator. 

There are three advantages of using the log-DM over the 
log-PCM in our case. The first advantage is that log-PCM 
usually requires a multi-bit DAC' after the PCM block, to 
reconstruct its analog input, introducing a source of nonlin- 
earity in the overall modulator. Clearly log-DM does not 
suffer from this problem since the quantizer used inside the 
DM is single-bit and thus has a 1 inear behavior. 

Furthermore, it is found through simulation that the use 
of log-PCM introduces large tones at the modulator output, 
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Figure 5: Equivalent form of the ASDM. 

especially when the number of PCM-levels is small. These 
tones are usually undesirable when dealing with speech 
signals. On the other hand, the log-DM does not intro- 
duce large tones to the modulator since the output of the 
DM is inherently analog. 

Finally, log-PCM offers an SNR performance that is ide- 
ally independent of the input signal strength. However, 
this feature is not practical since it requires a PCM with 
infinite dynamic range [7] .  The log-DM offers practically 
unlimited dynamic range provided that it is given enough 
tracking time. 

The delta modulator can be linearized by replacing its 
quantizer by an additive quantization noise e d ( n )  as shown 
in Figure 4b. The noise e d ( n )  is assumed to be uniformly 
distributed in an interval [-A, A] (usually A = 1 for sin- 
gle bit DM). The transfer function of the linearized DM 

Substituting the expression for xd(n) from equation (1 l), 
we get 

K ( n )  2 @ ( ? a ) ,  (21) 

then we arrive at the expression 

This result shows that we can approximate the adapter and 
quantizer in the main loop of Figure 2a by a time varying 
gain K(n) .  Figure 6 shows the resulting equivalent struc- 
ture of our ASDM. Since the distribution of the random 
error signal ed(n)  is known, the distribution of the variable 
gain K ( n )  can be readily defined. Our further analysis is 
based on the following basic assumptions: 

1. All random processes are stationary. 

2. The variable gain K ( n )  is independent of everything 
else. 

Figure 6: The ASDM as a linear time variant (LTV) sys- 
tem. 

3.2. Mean Analysis 

In this section, we show that the input signal x ( n )  and 
the output signal w(n) have the same mean. As a result, the 
error signal e,(n) has zero mean. To show this, refer back 
to equations ( I ) ,  (2) and (22). Then, 

E{p(n ) }  = E{ (1 - K ( n  - I ) ) p ( n  - 1) + ~ ( n ) } .  (23) 

Based on the independence and stationarity assumptions, 
we can write 

Solving for Ep we get 

1 
E --E,. '- EK 

We also know from equation (22) that 

E{v(n ) }  = E{K(n)p(n)l .  (26) 

Therefore, E, =  EKE^. Substituting the expression for 
Ep we get E, = E,, and consequently, 

Thus, we conclude that for any arbitrary stationary and 
bounded input, the expected value of the error e,(n) is 
zero. 

3.3. BIB0 Stability of the Modulator 

Consider the modulator structure shown in Figure 6. 
The signal p ( n )  is given by 



Corollary Assume that ed(n)  is a uniformly distributed 
random variable between [-A, A]. If a is chosen such p ( n )  = p ( n  - 1) + ~ ( n )  - w(n - 1).  (28) 

From equation (22) we have 

P(n) = P(n - 1) -I- - K ( n  - l)P(n - 1). (29) 

Thus, the dynamic equation for the signal p ( n )  can be ex- 
pressed as 

then a bound L can be found that mtisjes condition (34). 

Proof: Let L = 1-6 where E is a sufficiently small positive 
number. Then we can write 

- p ( n )  = (1 - K ( n  - 1) p ( n  - 1) + ~ ( n ) .  (30) 1 + E 5 1 - K ( n )  5 1 - E. (41) 

Since p ( 0 )  = 0, the forced response of p ( n )  is Therefore, 
E 5 K ( n )  5 2 - E .  

n n  
Since K ( n )  = aed(n) and ed(n )  is a uniform random vari- 
able between [-A, A], then we can write (3 p ( n )  = n (1 - K ( j  - 1)) 44. 

i=l j= i  

When the input signal z(n)  is bounded, i.e., 
- 

(32) In other words, the closed interval [apA ,  aA] lies entirely 
inside the interval [ - E ,  2 - E]. Solving for a we get I.(n)l 5 A < 03, 

for some A, then we get 
( 2  - E ) - &  5 a 5 (2 - E ) & .  (44) 

n n  

IP(n)l 5 A n 11 - K ( j  - 111. (33) Since this inequality is true for any small E > 0 then 
a = 1  J = %  

2 - k < a < 2 k  0 (45) 

Lemma The signal p ( n )  will be bounded if 
4. CONCLUSION 

In this work we studied the stability of the ASDM structure 
11 - K ( n ) )  5 L < 1, (34) 

for some L and for all n. In this case, the modulator output 
will be bounded by 

in [I]. In particular, a range of values for the modulation 
exponent term to guarantee stabi1:ity has been derived. 

5. REFERENCES A 14n)l I CYA m. ( 3 5 )  

[ 11 Aldajani, M. and Sayed, A. E[., “An adaptive structure 
for sigma delta modulation with improved dynamic 
range,” Proc. 43rd Midwest Symposium on Circuits 
and Systems, Lansing, MI, Aug. 2000. 

n n-1 [2] Chakravarthy, C., “An amplitude controlled adaptive 
delta sigma modulators,” Radio and Electronic Engi- 
neering, Vol. 49, No. 1, Jan. 1979, pp. 49-54. 

[3] Jaggi, M. and Chakravarthy, C., “Instantaneous adap- 
tive delta sigma modulator,” Canadian Electrical En- 
gineering Journal, Vol. 11, ho. 1, Jan. 1986, pp. 3-6. 

[4] Yu, J., Sandler, M., and Hwaken, R., “Adaptive quanti- 
zation for one bit delta sigma modulation,” IEEE Pro- 
ceedings G (Circuits, Devices and Systems), Vol. 139, 

Proof: If equation (34) is satisfied, i.e., if the quantity 
1 - K ( n )  is uniformly bounded by 1, then from equaticn 
(33) we conclude that 

~ p ( n ) l  5 A ~ L ~ - ~ = A ~ L ’ ,  (36) 
2=1 ’=O 

so that 

A 
Mn)l 5 ” (37) 

Also, from equation (22), we conclude that 

Referring to equation (21), the maximum of K ( n )  is given 
by 

max(K(n)) = aA.  (39) 

Substituting back into (38) we get (35) o 

To complete the argument, we need to show when condi- 
tion (34) is satisfied. In other words, we need to determine 
the range of values for the exponent term a such that the 
quantity 11 - K ( n ) \  is uniformly bounded by one. 

No. 1, Feb. 1992, pp. 39-44. 
(38) [5] Dunn, C. and Sandler, M., “Fixed and adaptive sigma- 

delta modulator with multibit quantizers,” Applied Sig- 
nal Processing, Vol. 3, No. 4, 1996, pp. 212-22. 

[6] Ramesh, M. and Chao, K., “Sigma delta analog to dig- 
ital converters with adaptive quantization,” Proceed- 
ings of Midwest Symposiunz on Circuits and Systems, 

[7] Proakis, J. and Manolakis, D., Digital Signal Pro- 
cessing, Principles, Algorithms, and Applications, 
Prentice-Hall, Inc., NJ, 1996. 

IEEE, Vol. 1.2, 1998, pp. 22-25. 

132 


