
A BIO-INSPIRED FAST SWARMING ALGORITHM FOR DYNAMIC RADIO ACCESS

†Paolo Di Lorenzo, †Sergio Barbarossa and ‡Ali H. Sayed

†Sapienza Univ. of Rome, DIET, Via Eudossiana 18, 00184 Rome, Italy
‡Electrical Engineering Department, University of California, Los Angeles, CA 90095

E-mail: dilorenzo,sergio@infocom.uniroma1.it, sayed@ee.ucla.edu

ABSTRACT

The goal of this paper is to propose a bio-inspired algorithm for de-

centralized dynamic access in cognitive radio systems. We study

an improved social foraging swarm model that lets every node al-

locate its resources (power/bits) in the frequency regions where the

interference is minimum while avoiding collisions with other nodes.

The proposed approach adapts its behavior with respect to the in-

terference power perceived by every node, thus increasing the speed

of convergence and reducing the reaction time needed by the algo-

rithm to react to dynamic changes in the environment. The presence

of random disturbances such as link failures, quantization noise and

estimation errors is taken into account in the convergence analysis.

Numerical results illustrate the performance of the proposed algo-

rithm.

Index Terms— Cognitive radio, distributed resource allocation,

social foraging swarms, channel imperfections

1. INTRODUCTION

Dynamic radio access techniques have been investigated in recent

years as a way to improve the efficiency of the conventional spec-

trum access protocols [1]. The basic idea in cognitive networks is

to have a hierarchical structure where unlicensed users, also known

as secondary users (SU’s), are allowed to use temporally unoccu-

pied communication resources, such as frequency bands, time slots

or user codes, under the constraint of not interfering (or producing

a tolerable interference) with licensed (or primary) users. The op-

portunistic users should be able to sense the resources, either time

slots or frequency subchannels, use them and release them as soon

as primary users demand access. Besides cognitive radios, another

interesting area of application of dynamic radio access techniques is

femtocell networks, where a potential massive deployment of femto-

access points can cause an intolerable interference with macrocell

station users. In this case, the high number of femto-access points

motivates the study of decentralized radio access strategies, aided

with proper channel sensing. Bio-inspired models can lead to robust

systems that are capable of solving difficult organization tasks by ex-

ploiting cooperation among individual nodes, without the need for

a central processor. Recent works illustrate how cooperation over

adaptive networks can model collective animal behavior and self-

organization in biological networks such as birds flying in forma-

tion [2], fish foraging for food [3] and bacteria motility [4]. Inspired

by the swarm model in [5], in [6] a social foraging swarm model was

proposed for decentralized access in cognitive radios. The model
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was extended in [7] to cope with the random disturbances introduced

by the radio channel. The solution made use of stochastic approxi-

mation tools to devise an appropriate iterative algorithm and to prove

its convergence. Similar approaches have been previously followed

to prove convergence of consensus protocols affected by random dis-

turbances [8]. One of the main drawbacks of iterative methods is

that they need time to converge and, clearly, in a resource alloca-

tion problem, a distributed technique is appealing only if it guaran-

tees convergence in a few iterations. Natural swarms are adaptive

systems whose individuals cooperate in order to improve their food

search capabilities and to increase their robustness against predators’

attacks [3]. In this context, it typically happens that the individuals

closer to the predators’ positions move faster to avoid the dangerous

zones, while individuals moving within regions rich of food tend

to slow down their motion. Mimicking this natural behavior, in this

work we extend the previous models by incorporating adaptation and

learning in order to increase the convergence speed and the reaction

capability with respect to dynamic changes of the interference distri-

bution in the resource domain. The basic contributions of this paper

are: (a) the extension of the social foraging swarming model pro-

posed in [6] so that the motion of each individual depends not only

on the gradient of the interference profile, but also on its value; (b)

the derivation of the convergence properties of the proposed algo-

rithm in the presence of random disturbances such as link failures,

quantization noise and estimation errors; and (c) the application of

the proposed procedure to the dynamic resource allocation problem

in the frequency domain.

2. SWARM MODEL

We consider a set of M secondary users (SU) aimed at allocating

power in an n-dimensional Euclidean space. A typical setting is the

one where the resource space is the time-frequency domain (i.e., n =
2) and every secondary user is trying to access time and/or frequency

slots where there is small interfering power. To keep the notation

general, the single resource selected by agent i is described by a

vector xi ∈ R
n, denoting, for example, a frequency subchannel and

a time slot. The interaction between the SU nodes can be modeled

as an undirected graph G = (V,E), where V = 1, 2, ...,M denotes

the set of nodes and E ⊆ V × V is the edge set. We assume that

there is a link (edge) between two nodes if the distance between them

is less than a prescribed value (the coverage radius), dictated by the

node’s transmit power. We denote by A = {aij} the adjacency

matrix of graph G, composed of nonnegative entries aij ≥ 0, and

by Ni the set of neighbors of agent i, defined as Ni = {j ∈ V :
aij 6= 0}. Let D be the degree diagonal matrix with diagonal entries

dii that are the row sums of the adjacency matrix A. The graph

Laplacian L is an M×M matrix associated with graph G, defined as
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L = D−A. In [6], the resource allocation problem was formulated

as the distributed minimization of a global potential function defined

as follows:

J(x) =
M
∑

i=1

σi(xi)+
1

2

M
∑

i=1

M
∑

j=1

aij [Ja(‖xj−xi‖)−Jr(‖xj−xi‖)].

(1)

where x := (xT
1 , . . . ,x

T
M )T and σi : R

n → R represents the

interference power over the optimization domain (e.g., the time-

frequency plane) perceived by node i. The minimization of the first

term of (1) leads every node to find a position xi such that the overall

interference power is minimum. The second term of (1) incorporates

a short repulsion term, Jr(‖xj − xi‖), and a long range attraction

term, Ja(‖xj − xi‖), whose effect is to avoid collisions among the

resources and lead to a swarm cohesion minimizing the spread over

the resource domain. Hence, the swarm will move in time-frequency

regions where there is less interference and will remain as cohesive

as possible by avoiding conflicts among SU’s. Furthermore, there

is a unique distance at which the attraction and repulsion forces

balance: the so called equilibrium distance in the biological liter-

ature [9]. Considering again the swarm analogy, the occupied zones

in the resource domain take the role of dangerous regions that must

be avoided by the swarm individuals as fast as possible, while idle

bands represent regions rich of food that the agents have to occupy

reducing their speed. Mimicking this natural learning capability, in

this paper we propose a distributed minimization of (1) based on a

scaled gradient descent optimization, so that every node starts with

an initial guess, let us say x0, and it updates its own resource alloca-

tion vector xi(t) according to the following dynamical system:

ẋi(t) = −fi(σi(xi(t)))∇xiJ(x(t))

= −fi(σi(xi(t)))

[

∇xiσi(xi(t))−

M
∑

j=1

aij g(xj(t)− xi(t))

]

(2)

i = 1, . . . ,M , with x(0) = x0, where g(·) denotes the vector

function

g(y) = [ga(‖y‖)− gr(‖y‖)]y, (3)

where ga(r) and gr(r) are the derivatives of Ja(r) and Jr(r) with

respect to r, respectively. The functions fi(·) ∈ [fmin, fmax] > 0
are monotonically increasing functions of the interference power

perceived by every node at its current position on the resource do-

main. Examples include linear, quadratic, logarithmic functions,

etc. The goal is to accelerate the motion of the resources perceiv-

ing a high interference and, at the same time, to slow down the re-

sources that are allocating on idle sub bands. As we will show in

the simulation section, this adaptive behavior considerably improves

the performance of the algorithm. In this paper we consider attrac-

tion/repulsion functions having a linear attraction term, i.e.,

ga(‖xj − xi‖) = cA cA > 0, (4)

and bounded repulsion, i.e

gr(‖xj −xi‖) = cR exp

(

−
‖xj − xi‖

2

cG

)

, cR, cG > 0, (5)

for any ‖xj − xi‖. This choice of attraction and repulsion results

in a coupling function g(·) that is continuously differentiable with

bounded partial derivatives. The equilibrium distance between at-

traction and repulsion forces can be adjusted by acting on the pa-

rameters cA, cR and cG. In our setting, this equilibrium distance is

chosen proportional to the bandwidth of the frequency slot, in the

frequency domain, or to the duration of the elementary time slot. In

our intended application, the coefficients aij depend on the distance

between the nodes, and two nodes communicate with each other only

if they are spatial neighbors. Hence, in our setting, two nodes i and

j with no direct link between them (i.e., with aij = 0), may end up

with the same allocation vector. But, indeed, this is what is known

as spatial reuse of frequency or time slots. The updating rule (2)

is distributed because each node interacts only with a small subset

of neighbors, thus requiring only short-range communications in a

narrow band spectral interval and over consecutive time slots. More-

over, each individual in the swarm only has to estimate local pa-

rameters: the gradient of the interference level, evaluated only on

its intended running position xi, and the balance of attraction and

repulsion forces with its immediate neighbors.

2.1. Random Link Failures

In a realistic communication scenario, some packets may be lost at

random times. To account for this effect, we let the links among the

network nodes fail, inducing a time-varying, or switched, network

topology, depending on the link failures. The network at time k is

modeled as an undirected graph, G(k) = (V,E(k)) and the graph

Laplacians as a sequence of i.i.d. Laplacian matrices {L(k)}. We

model the graph Laplacians as

L[k] = L̄+ L̃[k] (6)

where L̃[k] is a zero-mean sequence of independent identically dis-

tributed (i.i.d.) Laplacian matrices and L̄ = E[L[k]]. Connected-

ness of the graph is an important issue. We do not require that the

random instantiations G(k) of the graph be connected; in fact, all

these instantiations could be disconnected. What we require is only

that the graph be connected on average sense. This is captured by

requiring the second eigenvalue of the mean graph Laplacian to be

strictly positive, i.e., λ2(L̄) > 0.

2.2. Dithered Quantization

We assume that each inter-node communication channel uses a quan-

tizer, which uniformly quantizes each component by the quantization

vector function, q(·) : Rn → Qn,

q(y) = [b1∆, . . . , bn∆] = y + e(y) (7)

where y is the channel input , ∆ > 0 is the quantization step and

e(y) is the quantization error. Adding to each component ym[k] a

dither sequence {νm[k]}k≥0 of i.i.d. uniformly distributed random

variables on [−∆/2,∆/2) independent of the input sequence, the

resultant error sequence {ǫm[k]}k≥0,

ǫm[k] = q(ym[k] + νm[k]) − (ym[k] + νm[k]), (8)

is an i.i.d. sequence of uniformly distributed random variables on

[−∆/2,∆/2), which is independent of the input sequence. Thus,

by randomizing appropriately the input to a uniform quantizer, we

can render the error to be independent of the input and uniformly

distributed on [−∆/2,∆/2). This leads to useful statistical proper-

ties of the error, which we will exploit in this paper.

3. CONVERGENCE ANALYSIS

In this section we will study the convergence properties of the fast

swarming algorithm under two main assumptions:



Assumption A.1 : The interference profile functions σi(y) ∈ C1

and there exists a constant σ̄ > 0 such that

‖∇yσi(y)‖ ≤ σ̄, for all i,y. (9)

This assumption is quite general and it only requires the gradient of

the profile to be bounded. This hypothesis is indeed very reasonable

in the context of interest.

Assumption A.2 : Given the initialization vector x0, the set

Ω0 ≡ {x : J(x) < J(x0)} is compact.

In our application, the resource allocation domain, either a fre-

quency band or a time interval (or both), is always a compact set.

The incorporation of the frequency and/or time interval limits in

our problem can be done either by imposing box constraints on our

optimization or by adding to σi(xi) a positive continuous term that

goes to infinity very rapidly, outside the optimization interval. We

follow this second approach.

Considering an ideal communication case, the evolution of the

time derivative of the global potential function (1) along the system

trajectory (2) is given by

J̇(x) = [∇xJ(x)]
T
ẋ =

M
∑

i=1

[∇xiJ(x)]
T
ẋi

=
M
∑

i=1

[−f−1
i (σi(xi(t)))ẋi]

T
ẋi

= −

M
∑

i=1

f−1
i (σi(xi(t)))‖ẋi‖

2 ≤ 0 for all t. (10)

This means that, moving along the trajectory given by (2), the po-

tential function J(x) is always nonincreasing and it stops decreas-

ing (i.e., J̇(x) = 0) only if ẋ = 0. Under assumption A.2, the

set Ω0 ≡ {x : J(x) < J(x0)} is compact, then using LaSalle’s

Invariance Principle we conclude that, as t → ∞, the state x(t)
converges to the largest invariant subset of the set defined by {x ∈

Ω0 : J̇(x) = 0} ≡ {x ∈ Ω0 : ẋ = 0}. Then, under Assumption

A.2, the presence of equilibrium points such that ẋ = 0 is assured.

However, in an imperfect communication case, where the network

links fail randomly and communication is corrupted by quantization

noise, the nodes have access only to a random subset of neighboring

states and in the event of an active communication, the transmitted

data is corrupted. Furthermore, the estimation of the local gradient

of the profile is in general affected by errors as

∇xi σ̂i(xi) = ∇xiσi(xi) + ηi (11)

where ηi is a zero mean i.i.d. vector noise sequence of bounded vari-

ance. In these operative conditions, the convergence is not assured

anymore and the swarming algorithm needs to be adjusted in order

to accommodate such imperfect communication scenarios. Let us

consider the discrete time version of the swarming algorithm in (2).

In the presence of random link failures, dithered quantization noise

and estimation errors, the discrete-time swarm adaptation rule can

be written as

xi[k + 1] = xi[k] + α[k]fi(σi(xi(k)))

[

−∇xi[k]σi(xi[k]) +

−ηi[k] +

M
∑

j=1

aij [k] g(xj [k]− xi[k] + ν[k] + ǫ[k])

]

i = 1, . . . ,M

where α[k] is a positive iteration dependent step size. In the presence

of a small quantization noise, we can take a first order approximation

of the vector function g(·), approximating the updating rule (12) as

xi[k + 1] ≃ xi[k] + α[k]fi(σi(xi(k)))

[

−∇xi[k]σi(xi[k])

− ηi[k] +

M
∑

j=1

aij [k] g(xj [k]− xi[k]) +

+
M
∑

j=1

aij [k] Jg(xj [k]− xi[k])(νij [k] + ǫij [k])

]

i = 1, . . . ,M (12)

where Jg(xj [k]−xi[k]) is the Jacobian matrix of g(·) evaluated at

(xj [k]−xi[k]). Now, exploiting the structure of the function g(·) in

(3) and the features of linear attraction in (4) and bounded repulsion

in (5), the overall system dynamic can be expressed in compact form

as

x[k + 1] = x[k] + α[k]B(x[k])
[

−Σ(x[k])−Ξ[k] +

−
(

Lx[k]⊗ In

)

x[k] +Υx[k] +Ψx[k]
]

(13)

where B(x[k]) = diag(fi(σi(xi(k)))In)i=1,...,M , Υx[k] and

Ψx[k] are the state-dependent aggregated contribution of quantiza-

tion noise, Σ(x[k]) = col{∇xi[k]σi(xi[k])}i=1,...,M , Ξ[k] =
col{ηi[k]}i=1,...,M is the overall estimation noise vector and

Lx[k] = Dx[k] − Ax[k], where [Ax[k]]ij = {aij(cA −

cRe
−‖xj [k]−xi[k]‖

2/cG)} is a symmetric state-dependent adjacency

matrix. It follows from the conditions on the dither (see section II-

B) that E[Υx[k]] = E[Ψx[k]] = 0 and supk

[

‖Υx[k]‖
2
]

=

supk

[

‖Ψx[k]‖
2
]

≤ ζq . In the recursive procedure (13), we make

the following assumptions :

Assumption B.1 : (Estimation Noise) We assume that the obser-

vation noise process Ξ[k] = col{ηi[k]}i=1,...,M in (11) is an i.i.d.

zero mean process, with finite second order moment, i.e.,

E[Ξ[k]TΞ[k]] ≤ ϕe, ∀k. (14)

Assumption B.2 : (Independence) The sequences {Lx[k]}k≥0,

{Υx[k]}k≥0, {Ψx[k]}k≥0 and {Ξ[k]}k≥0 are mutually indepen-

dent.

Assumption B.3 : (Markov) Consider the filtration {Fx
k }k≥0, given

by

Fx
k = σA

(

x(0), {Lx[n],Υx[n],Ψx[n],Ξ[n]}0≤n<k

)

. (15)

where σA(·) denotes sigma-algebra. The random quantities Lx[k],
Υx[k], Ψx[k] and Ξ[k] are then independent of Fx

k , thus implying

that {x[k],Fx
k }k≥0 is a Markov process.

To prove the convergence of the algorithm in (13), we formulate

the swarming problem as the search for the zeros of a determin-

istic function, whose value is corrupted by random disturbance

and can be observed at each time instant, giving conditions for the

almost sure convergence of such procedure. To this end, we recall

here below a basic theorem of stochastic approximation theory [10] .

Theorem 1 Let {x[k]}i≥0 be the Markov process defined by the

difference equation

x[k + 1] = x[k] + α[k]
[

R(x[k]) + Γ(k + 1,x[k], ω)
]

(16)



with initial condition x[0] = x0, where R(·) : R
M → R

M is

Borel-measurable, Γ(k + 1,x[k], ω) is a family of zero-mean ran-

dom vectors in R
M , defined on some probability space (Ω,F ,P),

and ω ∈ Ω is a canonical element of Ω. Assume that there exists a

nonnegative function V (x) ∈ C2 with bounded second order partial

derivatives and a constant K > 0 satisfying the conditions:

lim
‖x‖→∞

V (x) = ∞, (17)

sup
x∈Uǫ,1/ǫ(S)

〈

R(x),∇xV (x)
〉

< 0 for ǫ > 0, (18)

‖R(x)‖2 + E‖Γ(k + 1,x, ω)‖2 ≤ K(1 + V (x)), (19)

where
〈

·, ·
〉

denotes the inner product operator and Uǫ,1/ǫ(S) =

{x ∈ R
M : ǫ < ‖x − xs‖ < 1/ǫ,xs ∈ S, ǫ > 0}. Then,

the process {x[k]}k≥0 converges almost surely (a.s.), as k → ∞,

either to a point of the solution set S = {x : R(x) = 0}, or to the

boundary of one of its connected components, provided that

α[k] > 0,

∞
∑

k=0

α[k] = ∞,

∞
∑

k=0

α2[k] < ∞. (20)

Proof. The proof can be derived directly from [10] (Th. 5.2.3).

In the following, we use Theorem 1 to prove the a.s. conver-

gence of the iterative swarming procedure.

By decomposing the state dependent Laplacian matrix Lx[k]
into the sum of a mean part plus a random part as in (6), expression

in (13) can be written as in (16) where

R(x[k]) = −B(x[k])

[

Σ
∇(x[k]) +

(

L̄x[k]⊗ In

)

x[k]

]

(21)

Γ(k + 1,x[k], ω) = −B(x[k])

[

(

L̃x[k] ⊗ In

)

x[k] +

− Υx[k]−Ψx[k] +Ξ[k]

]

. (22)

The original swarming problem has been converted into the search

for the zeros of a deterministic function, R(x[k]), whose value mea-

surable at each time instant k is corrupted by an additive random

disturbance Γ(k + 1,x[k], ω).

We are now able to state the main theorem of the swarming be-

havior in the presence of random disturbances.

Theorem 2 Let us consider the fast swarming algorithm in (12)

with arbitrary initial state x0. Under the hypothesis of a small ad-

ditive quantization noise, the assumptions A.1 and B.1-B.3, the al-

gorithm converges a.s. as k → ∞ to one of the zeros of the function

R(x) in (21) or, equivalently, to a local minimum of the function

J(x) in (1) evaluated for the mean graph. Then

P

[

lim
k→∞

ρ(x[k], S) = 0

]

= 1 (23)

where ρ(·) is the standard Euclidean metric norm and S = {x :
R(x) = 0} is the solution set.

Proof. Due to lack of space, we will give only a sketch of the proof.

Under assumption B.3, the sequence generated by the swarming al-

gorithm in (12) is a Markov process. The proof follows by showing

that there exists a stochastic potential function V (x) such that the

swarming algorithm in (12) satisfies the conditions of Theorem 1.

Consider the function V (x) = J̄(x), where J̄(x) coincides with

the system potential function in (1) evaluated for the mean graph L̄.

Under the choice of linear attraction and bounded repulsion in (4)

and (5), the potential V (x) ∈ C2 is a nonnegative function with

bounded second order partial derivatives. The function moreover is

coercive and goes to infinity as ‖x‖ → ∞. Being R(x) in (21) a

scaled gradient descent direction for the optimization of V (x), it is

easy to show that the Lyapunov condition in (18) is always verified

for all x outside the solution set S. Applying now the assumptions

A.1, B.1 and B.2, some algebra shows that the inequality in (19)

holds, thus concluding the proof.

4. SIMULATION RESULTS

In this section we provide some numerical results to assess the per-

formance of the proposed algorithm.

Example 1: Allocation performance in the presence of link fail-

ures, quantization noise and estimation errors

The aim of this example is to show the allocation of the proposed

algorithm in the case in which the estimation of the profile gradient

is imperfect and the communication among the sensors is affected

by link failures and quantization noise. We consider the interference

profile (supposed the same for every node) as in Fig. 1, where the

true spectrum is given by the blue curve, whereas the noisy observa-

tion is represented by the red lines. We assume the presence of 15
resources (to be allocated from as many cognitive users) that, even

in the presence of random disturbances, should be able to fill the

low interference band in the middle of the spectrum. The secondary

network is connected, but it is not fully connected. The resources

are initially scattered randomly across the frequency spectrum. At

the k-th iteration of the updating rule (12), each node communicates

to its neighbors the position it intends to occupy, i.e., the scalar

xi[k] representing a frequency subchannel. Because of fading and

additive noise, a communication link among two neighbors has a

certain probability p to be established correctly. The values to be

exchanged are also affected by quantization noise, supposed to be

small with respect to the equilibrium distance between two agents.

The estimation noise of the profile gradient is assumed to be gaussian

distributed with zero mean and variance σ2
e = 1. In this example, we
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−0.5

0

0.5

1

1.5

Frequency (Mhz)

P
S

D
 (

m
W

/H
z
)

Fig. 1. Example of resource allocation.
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Fig. 2. Average interference perceived by the swarm at convergence,

versus the slope parameter of the linear scaling functions, for differ-

ent probabilities of correct packet reception and different values of

the swarm attraction parameter cA.

consider linear scaling functions fi(σi(xi(k))) = ai+biσi(xi(k)),
for all i, where ai = 0.1 and the slope parameter bi must be chosen

in order to increase the convergence speed of the nodes perceiving

a high interference. An example of allocation is given in Fig. 1,

where the green dots represent the final frequency channels chosen

at convergence by the network nodes. The parameters of the swarm

are cA = 0.02, cR = 0.5, cG = 1 and we considered p = 0.7.

As we can see, the number of allocated channels is less than the

number of requested resources. This means that a certain number

of nodes have picked up the same channels. We have checked nu-

merically that in all simulations, choosing appropriately the swarm

parameters, the final channel allocation never determines collisions

among spatial neighbors. This means that the algorithm is capable

of implementing a decentralized mechanism for spatial reuse of

frequencies. To measure the effectiveness of the distributed resource

allocation strategy, in Fig. 2 we report the interference level , versus

the slope parameter bi of the linear scaling functions, averaged over

the frequency slots occupied by the SUs, after convergence. The

result is averaged over 100 independent realizations. We considered

two different values of the probability p and of the swarm attraction

parameter cA. The parameters of the swarm are cR = 0.5, cG = 1;

the iteration dependent step size is given by α[k] = α0/k, with

α0 = 0.1, in order to satisfy (20). From Fig. 2, we notice that at

low values of the parameter bi, the movement of the resources is

very limited and some resources end up allocating by mistake in the

region occupied by the primary users, trapped because of the random

disturbances affecting the algorithm. As bi increases, the resources

perceiving a high power move faster toward the interference-free

region due to the increment of the average profile gradient and the

cohesion force, thus making the overall swarm experience a smaller

total interference. This means that the performance of the swarming

algorithm can be considerably improved if every node adapts its

scaling function according to the perceived interference. In par-

ticular, from Fig. 2, we notice how an increment of the cohesion

force induces a better performance. This example shows that the

cohesion force represents an intrinsic robustness factor of the al-

gorithm. In fact, resources allocating over high interference bands

might measure a flat spectrum, thus resulting in limited capabilities

to move out of (flat) occupied bands, if the only cause of change

is the spectrum gradient. However, increasing the cohesion force,

Fig. 3. Normalized system potential function vs. time index, for

different probabilities of correct packet reception.

the agents allocating over the low interference band tend to form

cohesive blocks that exert an attraction towards the agents trapped

by mistake over the flat regions of the spectrum occupied by the

primary users. This is an example of cooperation gain. From Fig. 2,

we also notice, as expected, how a lower probability to establish a

communication link determines worst performance.

Example 2: Fast swarming in the frequency domain

In this section we show some numerical examples to evaluate

the convergence time of the proposed allocation algorithm. The

example compares the convergence speed of the gradient based

swarming algorithm (B(x) = I) and of the proposed method with

scaling coefficients weighted by the perceived interference power.

We consider an interference profile as in Fig. 1. In Fig. 3, we

report the average evolution of the system potential function, e.g.,

(1), normalized with respect to the maximum and the minimum

value, averaged over 500 independent realizations, vs. the iteration

index, considering two different values of probability p to establish

a link. In the simulation, we consider a linear scaling function with

parameters ai = 0.1 and bi = 20. The parameters of the swarm

are cA = 0.2, cR = 4, cG = 1; the step size is chosen such that

α0 = 0.2 for both the algorithms. From Fig. 3, we notice that the

only effect of the random link failures is to slow down convergence.

This illustrates the robustness of the proposed algorithm. Moreover,

the simulation shows how the scaled version greatly outperforms the

gradient based algorithm. This means that the convergence time of

the swarming algorithm can be considerably improved if every node

adapts its convergence speed according to the perceived interference.

Example 3: Fast dynamic response of the swarm to a predator

(interferer)

We show next that the proposed resource allocation increases, as

a by-product, the network robustness against the intrusion of a pri-

mary user (predator). We consider a connected secondary network

composed of 15 nodes, plus the inclusion of two PU’s that start

emitting, at different times, thus causing a dynamic change of the

occupied spectrum. Our goal is to test the dynamic response of the

network to this changing environment. Resorting again to the swarm

analogy, PU’s take now the role of predators whose positions must

be avoided by the swarm individuals. In this context it is reasonable
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Fig. 4. Resource allocation by swarming: Adaptation of allocations

to PU’s activations.

that the swarm agents closer to the predator’s positions move faster

to avoid the dangerous zones. The proposed algorithm accelerates

the motion of the resources perceiving a high interference, improv-

ing the reaction time needed by the algorithm to perform a resource

allocation on idle bands in case of a PU’s activation. In Fig. 4 we

give an example of dynamic resource allocation in the frequency

domain. On the top part of Fig. 4, we have only one active PU and

the final allocation is given by the green dots. In a subsequent time

instant a second PU starts to transmit and the swarm individuals

react to the new interference profile getting the final allocation on

the bottom part of Fig. 4. To give an example of the reaction time

needed by the algorithm to react to the PU’s intrusion and adjust

the resource allocation consequently, in Fig. 5 we show the behav-

ior of the average interference perceived by the swarm versus the

time index. The two peaks at the iterations 67 and 133 correspond

to the two PU’s activation times. The low power value represents

the noise level. The linear scaling functions and the attraction and

repulsion parameters are the same used in the previous simulation;

the step size is set equal to α = 0.1. From Fig. 5, we notice how

the proposed approach needs only a small number of iterations to

leave the regions occupied by the PU’s. This positive behavior is

a consequence of the adaptation of the algorithm to the perceived

interference, determining that resources allocating on high interfer-

ence regions move faster due to the increment of the profile gradient

and the cohesion force.

5. CONCLUSIONS

In this paper we have studied a fast swarming algorithm applied

to dynamic decentralized radio access in cognitive radio networks.

Fig. 5. Dynamic resource allocation by swarming: Reaction time to

PU’s activations.

The proposed algorithm adapts the speed of the swarm individuals

according to the perceived interference distribution resulting in an

improved convergence speed and adaptation capability. Numerical

results show how the allocation performances improve thanks to this

adaptive behavior. The convergence of the algorithm is assured un-

der the effect of random disturbances introduced by the radio chan-

nel, whose effect is to slow down the convergence speed.
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