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Abstract— We develop an efficient adaptive receiver for joint equal-
ization and interference cancellation for multi–user space–time block–
coded transmissions. The receiver exploits the code structure and allows
multiple user transmissions over frequency–selective fading channels with
reduced complexity and lower system overhead. The adaptation scheme is
based on a recursive least–squares implementation for faster convergence;
nevertheless, it exploits the code structure to attain RLS performance at
LMS complexity.

I. INTRODUCTION

Single-carrier frequency-domain equalization (SC-FDE) offers sev-
eral advantages such as low complexity receivers (due to the use
of the FFT), and reduced sensitivity to carrier frequency offset
and nonlinear distortion in comparison to orthogonal frequency
division multiplexing (OFDM) [1]. When combined with space–
time block–codes and the Alamouti scheme [2], SC-FDE can help
increase system capacity without requiring additional bandwidth [3]–
[6]. However, when implemented over frequency-selective channels,
the Alamouti scheme should be implemented at a block and not
symbol level in order to achieve multipath diversity gains [3]. In
this paper, we consider a multi-user multi-antenna scenario with
2M transmit antennas and M receive antennas, whereby each user
is equipped with 2 antennas. Transmissions from each user are
coded in a block space-time manner with cyclic prefixing. Two
receiver structures are designed for such multiuser environments in
order to perform joint interference cancellation, equalization, and
decoding. First, a minimum mean-square-error (MMSE) receiver is
developed with an iterative decoding scheme similar to [6]. This
structure requires channel information at the receiver, which can be
estimated by embedding training sequences into each block. Second,
an adaptive receiver is developed that does not require explicit
channel information and is therefore useful in reducing the system
overhead. The adaptive algorithm operates in two modes: training and
tracking and it exploits the structure of the space-time block code to
deliver RLS performance at LMS complexity.

II. TRANSMISSION OVER BROADBAND CHANNELS

A. The Single–User Case

Consider the scheme depicted in Figure 1, where a single user
equipped with two antennas is transmitting data over a wireless
channel and the receiver has a single antenna. Data are transmitted
from the antennas according to the space–time block coding (STBC)
scheme depicted in Figure 2 [3]. Denote the nth symbol of the
kth transmitted block from antenna i by x(k)

i (n). At times k =
0, 2, 4, · · · , pairs of length–N blocks x(k)

1 (n) and x(k)
2 (n) (for
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Fig. 1. A single–user system.

0 ≤ n ≤ N − 1) are generated by an information source according
to the rule:

x(k+1)
1 (n) = −x∗(k)

2 ((−n)N )

x(k+1)
2 (n) = x∗(k)

1 ((−n)N )f (1)

where x has a covariance matrix equal to σ2
xIN and (·)∗ and (·)N

denote complex conjugation and modulo–N operations, respectively.
In addition, a cyclic prefix of length ν is added to each transmitted
block to eliminate inter–user interference (IBI) and make all channel
matrices circulant. With two transmit and one receive antenna, the
received blocks k and k + 1 are described by

y(j) = H(j)
1 x(j)

1 + H(j)
2 x(j)

2 + n(j) for j = k, k + 1 (2)

where n(j) is the noise vector with a covariance matrix equal to
σ2

nIN , and H(j)
1 and H(j)

2 are the circulant channel matrices from
the first and second transmit antennas, respectively, over block j, to
the receive antenna. Applying the DFT matrix Q to y(j), we get (for
j = k, k + 1):

Y(j) �
= Qy(j) = Λ(j)

1 X(j)
1 + Λ(j)

2 X(j)
2 + N(j) (3)

where X(j)
i = Qx(j)

i , and N(j) = Qn(j), and Λ(j)
1 and Λ(j)

2 are
diagonal matrices given by Λ(j)

i = QH(j)
i Q∗. Using the encoding

rule (1) and properties of the DFT [7], and assuming the two channels

Fig. 2. Block format for SC FDE–STBC transmission scheme.
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Fig. 3. Receiver structure for a 2-transmit 1-receive antenna system.

are fixed over two consecutive blocks, we get

X(k+1)
1 (m) = −X∗(k)

2 (m)

X(k+1)
2 (m) = X∗(k)

1 (m) (4)

for m = 0, 1, · · · , N −1 and k = 0, 2, 4, · · · . Combining (3) and
(4), we arrive at

Y =
(

Y(k)

Ȳ(k+1)

)
=

(
Λ1 Λ2

Λ∗
2 −Λ∗

1

) (
X(k)

1

X(k)
2

)
+

(
N(k)

N̄(k+1)

)

�
= ΛX + N (5)

where (̄·) denotes complex conjugation of the entries of the vector and
Λ is the overall frequency–domain channel matrix from the transmit
antennas to the receive antenna. The matrix structure of Λ in (5), with
diagonal submatrices {Λ1,Λ2}, will appear frequently throughout
the paper, and we shall use the terminology Alamouti–like matrix to
refer to it. The minimum mean–square–error (MMSE) estimator of
X given Y is then

X̂ =
(
Λ∗Λ +

1
SNR

I2N

)−1

Λ∗Y
�
= Λ̃Λ∗Y (6)

where Λ̃ is diagonal and SNR is the signal–to noise ratio at
the receiver, SNR = σ2

x/σ2
n. The SC MMSE–FDE output is

transformed back to time–domain where decisions are made. The
receiver structure is shown in Figure 3 [8].

B. The Two–User Case

By using a second receive antenna, we can double the number of
users. The system block diagram is shown in Figure 4 [9]. With two
receive antennas and two users (each equipped with 2 antennas), Eq.
(5) generalizes to

(
Y1

Y2

)
=

(
Λ11 Λ12

Λ21 Λ22

) (
X1

X2

)
+

(
N1

N2

)
(7)

where Yi is the processed signal from the i–th receive antenna while
Ni is the corresponding noise vector. Moreover, Xi consists of the
two subvectors representing the size-N DFTs of the information
blocks transmitted from the i–th user’s first and second transmit
antennas at time k, i.e.,

Yi =

(
Y(k)

i

Ȳ(k+1)
i

)
, Xi =

(
X(k)

i1

X(k)
i2

)
, Ni =

(
N(k)

i1

N̄(k)
i2

)
(8)

and each Λij is the Alamouti–like overall frequency domain channel
matrix from the i–th user transmit antennas to the j–th receive
antenna. The two users can be decoupled by applying the following
linear zero–forcing interference canceller:

(
Z1

Z2

)
�
=

(
I2N −Λ12Λ−1

22
−Λ21Λ−1

11 I2N

) (
Y1

Y2

)

=
(

Σ 0
0 ∆

) (
X1

X2

)
+

(
Ñ1

Ñ2

)
(9)

where Σ = Λ11 − Λ12Λ−1
22 Λ21 and ∆ = Λ22 − Λ21Λ−1

11 Λ12. It
can be verified that both Σ and ∆ have an Alamouti–like structure.

Fig. 4. Two-user system.

Consequently, the equalization procedure described by (6) can be
applied to each user {Z1,Z2} in order to recover the original data
{X1,X2} (see [9]).

C. The Multi–User Case

With M users (each equipped with two antennas), we can use M
receive antennas to decouple all users and hence, increase the system
capacity. Equation (5) generalizes to




Y1

Y2

...
YM





︸ ︷︷ ︸
2NM×1

=





Λ11 Λ12 . . . Λ1M

Λ21 Λ22 . . . Λ2M

...
...

. . .
...

ΛM1 ΛM2 . . . ΛMM





︸ ︷︷ ︸
2NM×2NM





X1

X2

...
XM





︸ ︷︷ ︸
2NM×1

+





N1

N2

...
NM





︸ ︷︷ ︸
2NM×1

(10)
where Yi, Xi, and Ni are given by (8) and each Λij is the Alamouti–
like frequency domain channel matrix from the i–th user transmit
antennas to the j–th receive antenna. We can iteratively recover the
symbols of each user by successive Schur complementation, starting
from the M–th user, proceeding to the (M −1)–th user, and down to
the first user. To recover the symbols of the M–th user we partition
the channel matrix in (10) as





Λ11 Λ12 . . . Λ1M

Λ21 Λ22 . . . Λ2M

...
...

. . .
...

ΛM1 ΛM2 . . . ΛMM



 =




A B

C D



 (11)

with A, B, C, D denoting the 2N(M −1)×2N(M −1) upper–left,
2N(M − 1) × 2N upper–right, 2N × 2N(M − 1) lower–left, and
2N × 2N lower–right matrices, respectively.

A linear interference canceller similar to the one designed for the
two–user case in (9) can be used to suppress the interference from
the first M − 1 users on the M–th user as follows:




Z1:M−1

ZM




�
=




I2N×(M−1) −BD−1

−CA−1 I2N









Y1
Y2

...
YM





=




Σ1:M−1 0

0 ∆M









X1
X2

...
XM




+





Ñ1

Ñ2
...

ÑM





(12)

where Σ1:M−1 = A − BD−1C and ∆M = D − CA−1B. It
could be easily shown that ∆M has an Alamouti–like structure and
that Σ1:M−1 is an 2N(M − 1) × 2N(M − 1) block matrix with
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each 2N ×2N block is an Alamouti–like matrix. This result follows
directly from the following properties of Alamouti–like matrices:

• The sum or difference of two Alamouti–like matrices is an
Alamouti–like matrix.

• The inverse of an Alamouti–like matrix is Alamouti–like.
• The inverse of a block matrix with Alamouti–like subblocks is

a block matrix with Alamouti–like subblocks.

The next step is to apply the single–user SC MMSE–FDE of (6) to
ZM in order to get an estimate for the DFT of the symbols of the
M–th user, X̂M . Then, we apply IDFT to X̂M to get an estimate for
the corresponding symbols, x̂M The symbols of the (M −1)–th user
can be recovered by repeating the procedure on the reduced system:



Z1:M−1





︸ ︷︷ ︸
2N(M−1)×1

=



 Σ1:M−1





︸ ︷︷ ︸
2N(M−1)×2N(M−1)





X1

X2

...
XM−1





︸ ︷︷ ︸
2N(M−1)×1

+





Ñ1

Ñ2

...
ÑM−1





︸ ︷︷ ︸
2N(M−1)×1

(13)

Again, we partition Σ1:M−1 in a way similar to (11) with A, B, C,
D now being the 2N(M−2)×2N(M−2) upper–left, 2N(M−2)×
2N upper–right, 2N ×2N(M −2) lower–left, and 2N ×2N lower–
right matrices, respectively. We then apply an interference canceller
scheme similar to (12), followed by a single–user SC MMSE–FDE
to get an estimate for the symbols of the (M − 1)–th user, x̂M−1.
We then proceed until we recover the symbols of all M users. The
block diagram of the multi–user receiver is shown in Figure 5.

III. ADAPTIVE SCHEME

The joint interference–cancellation and equalization technique de-
scribed above requires the channels to be known at the receiver.
Channel estimation is done by adding a training sequence to each
block, which increases the system overhead. In this section, we
develop an adaptive receiver for joint interference cancellation and
equalization of the FDE–STBC. The adaptive receiver uses a few
training blocks during initialization, then it tracks the channel varia-
tions in a decision–directed mode.

By inspecting the structure of the interference canceller described
in Section II, we find that it successively multiplies the received
symbols of each user with alamouti–like matrices in order to decouple
them. We can verify that the overall response of the interference
canceller and the MMSE equalizers, i.e., the mapping from the {Yi}
to the {X̂i} has the following form





X̂1

X̂2

...
X̂M




=





A11 A12 . . . A1M

A21 A22 . . . A2M

...
...

. . .
...

AM1 AM2 . . . AMM









Y1

Y2

...
YM



 (14)

where each Aij , i, j = 1, · · · , M , has the following Alamouti–like
structure:

Aij =
(
Aij1 Aij2

A∗
ij2 −A∗

ij1

)
(15)

For the two–user case, the entries of Aij , i, j = 1, 2, are given
explicitly in [9]. However, the explicit knowledge of the entries of
these matrices is not needed for the development of the adaptive
solution. The adaptive solution proposed here works for any A′

ijs
regardless of their entries as long as they have an Alamouti-like

structure. Equation (14) can be rewritten as
(

X̂(k)
i1

¯̂X(k)
i2

)
=

M∑

j=1

(
diag(Y(k)

j ) diag(Ȳ(k+1)
j )

diag(Y(k+1)
j ) −diag(Ȳ(k)

j )

) (
Wij1

Wij2

)

�
=

M∑

j=1

Uj
kWij

=
(
U1

k . . . UM
k

)



Wi1

...
WiM



 = UkWi (16)

where i = 1 · · · M , and Wij1 and Wij2 are the vectors containing
the diagonal elements of Aij1 and Aij2 , respectively. Moreover, Wij

is a 2N × 1 vector containing the elements of {Wij1 and Wij2},
and Ui

k is an alamouti–like matrix of size 2N × 2N containing the
received symbols at antenna i from blocks k and k + 1. Equation
(16) reveals the special structure of the interference canceller for the
STBC problem. In the non-adaptive scenario, the coefficients of Wij

are calculated from a channel estimate at every block. Equation (16)
suggests that Wi can be computed adaptively, e.g., by using an RLS
algorithm (for faster convergence) or some other adaptive filter. In the
case of RLS, the receiver coefficients are updated every two blocks
according to the recursions:

Wi
k+2 = Wi

k + Pk+2U∗
k+2

[
Di

k+2 − UkWi
k

]
(17)

where

Pk+2 = λ−1[Pk − λ−1PkU∗
k+2Π(k)Uk+2Pk] (18)

and

Π(k) =
(
I2N + λ−1Uk+2PkU∗

k+2
)−1

(19)

and λ is a forgetting factor that is close to 1. The initial conditions
are Wi

0 = 0 and P0 = δI2MN , δ is a large number, and I2MN is the
2MN × 2MN identity matrix. Di

k+2 is the desired response vector
given by

D1
k+2 =






(
X(k+2)

i1

X̄(k+2)
i2

)
for training

(
X̌(k+2)

i1
¯̌X(k+2)

i2

)
for decision–directed tracking

The block diagram of the adaptive receiver is shown in Figure 6.
The received signals from both antennas are transformed to the
frequency domain using FFT, then the matrices U1

k, · · · ,UM
k in (16)

are formed. The data matrix Uk is passed through the filters to form
the frequency domain estimates for the M users’ transmitted data X̂i.
The filter outputs are transformed back to the time domain using IFFT
and a decision device is used to generate the receiver outputs. The
receiver operates in a training mode where known training data are
used to generate the error vectors and update the receiver coefficients
until they converge, then it switches to a decision–directed mode
where previous decisions are used to update the receiver coefficients
for tracking. For decision–directed operation, the reconstructed data
are transformed back to frequency domain and compared to the
corresponding receiver outputs to generate error vectors. The error
vectors are used to update the coefficients according to the RLS
algorithm. When tracking channels with fast variations, retraining
blocks might be needed to prevent divergence of the algorithm.
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Fig. 5. A receiver structure for multi–user STBC transmissions.

Fig. 6. An adaptive receiver structure for an M–user system with 2M–transmit and M–receive antennas.

A. Exploiting STBC structure

Although matrix inversion is needed in (18) for operation of the
RLS algorithm, the computational complexity can be significantly
reduced and matrix inversion can be avoided by exploiting the special
STBC structure, in a manner similar to what we did in the two–user
case in [9]. Actually, the complexity of the algorithm can be shown
to be similar to that of an LMS implementation. We then end up
with RLS performance at LMS cost. The rationale behind complexity
reduction is as follows. Starting with Eq.(18) at k = 0, we get

P2 = λ−1[δI2MN − λ−1δ2U∗
2 Π(0)U2] (20)

However, Π(0) evaluates to

Π(0) =
(
I2N + λ−1δU2U∗

2
)−1

=
(
ΠN 0N

0N ΠN

)
(21)

where Π(0) is 2N × 2N and ΠN is N × N diagonal and given by

ΠN =
(
IN + λ−1δ

M∑

i=1

diag
(
|Y0

i |2 + |Y1
i |2

))−1

Substituting (21) into (20), we find that P2 is given by

P2 = λ−1δI2MN − (λ−1δ)2U∗
2 Π(0)U2

=




P11(2) . . . P1 2M (2)

...
. . .

...
P2M 1(2) . . . P2M 2M (2)



 (22)
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Π
2N

2N

2N 2N

k+2P

N

N

N N

(k)

Fig. 7. Matrix structures of Π(k) and Pk+2 for M = 2.

where Pij(2), i, j = 1 · · · 2M are N × N diagonal. Proceeding for
k = 2,

Π(2) =
(
I2N + λ−1U4P2U∗

4
)−1

(23)

After simple algebra, it can be verified that Π(2) has the form:

Π(2)
�
=

(
Ψ11(2) Ψ12(2)
Ψ21(2) Ψ22(2)

)−1

=
(

Π11(2) Π12(2)
Π21(2) Π22(2)

)
(24)

where Ψij(2), i, j = 1, 2, are N×N diagonal matrices. Block matrix
inversion can be used to evaluate Π(2). It can be easily shown that no
matrix inversion is needed since Ψij(2), i, j = 1, 2, are all diagonal
matrices. Moreover, the Πij(2), i, j = 1, 2, are N × N diagonal
matrices. P4 is then found to be

P4 = λ−1 [
P2 − λ−1P2U∗

4 Π(2)U4P2
]

(25)

It follows that P4 is a 2MN × 2MN block matrix that consists of
4M2 N×N diagonal matrices. This means that the number of entries
to be calculated is much lower than for a full matrix. If we proceed
further beyond k = 2, we will find that the structures for Π(k) and
Pk+2 stay the same. The matrix structures for the two–user case,
M = 2, are shown in Figure 7. Table I shows how we can use the
structure of Pk+2 to update its entries. It is worth mentioning that all
N × N matrices in Table I are diagonal. This means that any matrix
multiplication is simply evaluated by N scalar multiplications.

IV. SIMULATION RESULTS

In this section, we provide simulation results for the performance of
the adaptive interference canceller and equalizer for STBC. We simu-
lated two different scenarios, one for the two–user case and the other
for the three–user case. A Typical Urban (TU) channel is considered
with a linearized GMSK transmit pulse shape. Furthermore, all
channels are assumed to be independent. The overall channel impulse
response memory of the channel is ν = 3. In the two user scenario,
each user is equipped with two transmit antennas. The receiver is
equipped with 2 receive antennas. In the three–user scenario, the
receiver is equipped with three antennas. 8-PSK signal constellation
is used. The Signal–to–interference–noise ratio (SINR) is set to 0dB,
i.e., all users are transmitting at the same power. Data blocks of 32
symbols plus 3 symbols for the cyclic prefix are used. Figure 8 shows
the bit–error–rate performance of the system compared to the single
user case at two different Doppler frequencies. From this figure,
it is clear that the adaptive interference cancellation technique can
separate co–channel users without sacrificing performance. However,
at higher Doppler frequencies, the RLS algorithm might not be able
to track the channel variations. In this case, training more often can
improve the system performance at the expense of increasing system
overhead. It was shown in [8] that smaller training blocks can be
used to maintain low system overhead.
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Fig. 8. BER performance of the adaptive receiver.

V. CONCLUSIONS

An adaptive scheme for joint interference cancellation and equal-
ization of multi–user space–time block–coded transmission is de-
veloped. The scheme is based on a modified low–complexity RLS
algorithm that exploits the rich structure of STBC to separate M
equal–powered co–channel users. Both training and tracking perfor-
mance results of the scheme are presented. It is shown that the system
capacity can be increased by using this scheme while maintaining low
system complexity and overhead and without sacrificing performance
or bandwidth.
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Table I. Adaptation Algorithm

Define

Pk
�
=





P11(k) P12(k) . . . P1 2M (k)
P21(k) P22(k) . . . P2 2M (k)

...
...

. . .
...

P2M 1(k) P2M 2(k) . . . P2M 2M (k)





where each Pij(k) is N × N diagonal. Let

Uk
�
=

(
U1

k U2
k . . . UM

k

)

=
(
U11(k) U21(k) . . . U2M 1(k)
U12(k) U22(k) . . . U2M 2(k)

)

where the entries of Uk are given by Equation (16). Also, each Uij(k)
is N × N diagonal. Pk is now updated as follows:

1) Let

Ψk = I2N + λ−1Uk+2PkU∗
k+2 =

(
Ψ11(k) Ψ12(k)
Ψ21(k) Ψ22(k)

)

2) Compute its block entries Ψij(k) , i, j = 1, 2, as follows

Ψij(k) = ξij + λ−1 ·
2M∑

l=1

2M∑

m=1

Umi(k + 2)Pml(k)U∗
lj(k + 2)

where ξij = IN when i = j, and zero otherwise. Again, each
Ψij(k) is N × N diagonal.

3) Compute

Π(k) =




Σ−1

Ψ (k) Σ−1
Ψ (k)Ψ12Ψ−1

22

Ψ−1
22 Ψ21Σ−1

Ψ (k) Ψ−1
22 Ψ21Σ−1

Ψ (k)Ψ12Ψ−1
22





where ΣΨ(k) = Ψ11(k) − Ψ12(k)Ψ−1
22 (k)Ψ21(k) is the Schur

complement of Ψ22(k) and the time index (k) has been dropped
for compactness. The Πij(k) blocks of Π(k) are also N × N
diagonal.

4) Define Φk = U∗
k+2Π(k)Uk+2. It has a structure similar to Pk,

then the N × N diagonal matrices Φij(k), i, j = 1 · · · 2M , are
given by

Φij(k) =
2∑

l=1

2∑

m=1

U∗
il(k + 2)Πlm(k)Ujm(k + 2)

5) Update Pij(k + 2) as

Pij(k+2) = λ−1Pij(k)−λ−2
2M∑

l=1

2M∑

m=1

Pim(k)Φml(k)Plj(k)

6) Repeat the previous steps for each iteration.
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