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Absrrucr-This paper addresses the problem of adaptive channel track- 
ing and equalization for multi-input multi-output (MIMO) time-variant 
frequency-selective channels. A finite-length minimum-mean-squared- 
error decision-feedback equalizer (MMSE-DFE) performs the equaliza- 
tion task, while a Kalman filter tracks the MIMO channel, which models 
the corrupting effects of inter-symbol interference @SI), inter-user inter- 
ference @VI), and noise. The Kalman tracking is aided by previous hard 
decisions produced by the DFE, with a decision delay A > 0, which causes 
the Kalman filter to track the channel with a delay. A channel prediction 
module bridges the time gap between the channel estimates produced by 
the Kalman filter and those needed for the DFE adaptation. The pro- 
posed algorithm offers good tracking behavior for multi-user fading IS1 
channels at the expense of higher complexity. 

I. INTRODUCTION 

This paper generalizes the work of [ 11, where Kalman esti- 
mation and DFE equalization of a single user linear dispersive 
channel was presented. However, in modern wireless com- 
munication systems, apart from IS1 and fading, a significant 
source of performance degradation is also inter-user interfer- 
ence (IUI). This effect arises in many scenarios such as wide- 
band multiple access systems [2] or narrowband systems with 
many transmitheceive antennas [3]. In general, such systems 
can be modeled as multi-input multi-output (MIMO) time- 
variant frequency-selective channels with a few (matrix val- 
ued) taps, for which the receiver has a dual role, to track the 
channel tap coefficients and to equalize the channel, while sup- 
pressing IUI. Different choices are available to the designer for 
implementing channel estimation and equalization, depending 
on channel modeling and on the complexity invested in each 
task. 

This paper uses a Kalman filter to track the MIMO chan- 
nel taps. These taps are typically modeled as mutually uncor- 
related circular complex Gaussian random processes, having 
locally constant means, due to large scale path loss, reflec- 
tions and shadowing effects. The taps also have a time-varying 
part with autocorrelation properties corresponding to the wide- 
sense stationary and uncorrelated scattering “WSSUS” model 
of Bello [4]. If the tap means are zero, the channel is said 
to introduce Rayleigh fading (worst case), while a non-zero 
mean tap corresponds to Ricean fading. The Kalman chan- 
nel estimator is aided by previous hard decisions about the 
transmitted symbols from all users, produced by the MIMO 
equalizer. It should be noted that, at least for the single-user 
channel, Kalman-based estimation methods are quite common 
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in the literature (e.g., [5] uses the extended Kalman filter to 
track a channel with unknown delays). Also, in [6] the Kalman 
approach is used to formulate extended forms of the RLS al- 
gorithm, and the tracking superiority of those is demonstrated 
compared to the standard RLS and LMS algorithms. 

Assuming perfect knowledge of the MIMO channel, the op- 
timum receiver is a maximum likelihood sequence estimator 
(MLSE), but its complexity is prohibitive, even for low or- 
der channels with a small number of inputs and outputs. Here 
we use the MIMO finite-length minimum-mean-squared-error 
decision-feedback equalizer (MMSE-DFE), derived in [7] and 
optimized for decision delay A 2 0. The choice of A > 0 
improves performance for a wide range of channels, as shown 
in [l] for the single-user channel. However, this delay poses 
the problem of channel prediction when combined with the 
Kalman tracking procedure mentioned above, because there 
is a time gap of A between channel estimates produced by 
the Kalman filter (aided by the delayed DFE decisions) and 
the channel estimates needed for the current DFJ3 adaptation. 
We discuss simple methods to bridge this time gap, and show 
simulation results to demonstrate that the joint tracking and 
equalization algorithm proposed in this paper offers good per- 
formance. In fact, it outperforms conventional adaptive equal- 
ization algorithms, such as LMS or RLS, which do not have 
an explicit mechanism for incorporating the largely invariant 
channel statistics, such as the Doppler rate and the channel 
mean, in case they are known to the receiver from a previous 
training phase. 

The paper is organized as follows. Section I1 presents the 
channel model. Section I11 introduces the receiver block di- 
agram, and discusses the Kalman-based tracking, the channel 
prediction, and the delay-optimized adaptive DFE design. Sec- 
tion IV presents simulation results, and Section V concludes 
the paper. 

11. CHANNEL MODEL 

The MIMO channel with ni inputs and no outputs can be 
modeled as a matrix FIR filter. Specifically, consider the re- 
ceived observable up’ from receiver j (with j = 1, . . . , no) at 
time t: 
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where cg’) is the mth tap of the impulse response of order 
is 

the complex baseband constellation point transmitted by the 
ith user at time t - m, and is the complex noise sample at 
the jth receiver. Setting v = maxi,j ~ ( ~ l j ) ,  we write the MIMO 
channel input-output relationship in vector form as follows: 

v(i>j) between the ith input di) and the jth output, xt-m (4  

U 

Ut = c Cm(t)xt-m + V t  (2) 
m=O 

where ut and vt are column vectors of length no, C,(t)  are 
no x ni matrix channel taps, and xt are column vectors of 
length ni. In essence, there exist a total of nine interfering IS1 
channels (see Fig. 1 for (2 ,2)  system): 

c( i> j )  (t) = [ c y  (t) 1 ( t )  . . . C$!.) (t)] (3) 

and each of their taps can be written as: 

c p )  ( t )  = E?) + h k j )  ( t ) ,  m = 0, . , . , v (4) 

where we set the constant part &$’) = 0 for m > d z j ) .  

The time-varying part hgj) ( t )  is a zero-mean, wide-sense- 
stationary complex Gaussian process, uncorrelated with any 
other hg,”‘) ( t ) ,  and has time-autocorrelation properties gov- 
erned by the Doppler rate f d T ,  (T is the baud duration) as in 
P I :  

E { h k j ) ( t 1 ) [ h p ) ( t 2 ) ] ~ } ~ J ’ , 0  (2.rrfJ””+7tl - t21) ( 5 )  

where J’,, (.) is the zero-order Bessel function of the first kind. 

Fig. 1 .  The interfering IS1 channels in a (2,2) MIMO system 

Notice that each of the nin,(v+l) taps varies independently 
(although this will not be essential in our development) and can 
have a different Doppler rate. More importantly, the autocor- 
relation functions are non-rational, hence no ARMA model is 
an exact representation of the time evolution of the channel 
taps. However, only the first few correlation terms (for small 
It1 - t 2 l )  are important for the design of any receiver. Thus, 
even low order autoregressive models, or even a simple Markov 
model, can capture most of the channel tap dynamics and lead 
to effective tracking algorithms, as demonstrated below. For 
this purpose, we will need an alternative notation for the input- 
output relationship of the channel, of the form: 

(6) Ut = xt . C t  + V t ,  

where ct is a long vector of length nino(v + 1) containing all 
the channel taps at time t ,  ct = C + ht: 

C t  = [ c p ” ( t ) .  . . c p q t ) .  . . cp’” ( t ) .  . .cI;ni+o)(t). . . 

c p ’ ( t ) .  . . Cp”o)(t) . . . c p ” ( t ) .  . . c p ” o ) ( t ) ]  (7) 

. . x1?;In0] (8) 

T 

and the no x noni(v + 1) data matrix Xt is: 

zi1)In0. . . zfni)In, . . . x t - u I n , .  (1) 

The time-variant part of the channel is a vector process {ht}, 
which the receiver can model as a multichannel AR process of 
order p ,  as done in [9] for ni = no = 1: 

P 

ht = A(1)ht-l + G w ~  (9) 
1=1 

where wt is a zero-mean i.i.d. circular complex Gaussian vec- 
tor process with correlation matrix Rww(j) = E{wtwt+j} = 
Ih.r+lS(j). For p = 1, the best fit of the above AR(1) model 
with the theoretical autocorrelation given by (5) is achieved 
by choosing A(l)  = F to be a diagonal matrix with entries 
f k  = J’,0(2n fi”’”’j)T), where the index IC enumerates all the 
taps k = 1,. . . , nin,(v + l), and fJm’2”) is the Doppler of 
the mth tap of the channel from input i to output j .  The ma- 
trix G is also diagonal with entries g k .  Each g k  is specified 
from the “specular-to-diffuse power ratio” Kk for each tap, as 
follows: 

The ratio Kk indicates the ratio of power of the ICth mean chan- 
nel tap to the mean-squared power of the random, time-variant 
part of that tap, analogous to the Ricean factor defined in the 
wireless channel literature. 

Although higher order models can be constructed for larger 
p ,  it turns out that this simple first-order approximation is 
enough to model the channel dynamics to the extent neces- 
sary for a receiver to operate. For perspective, in a 2.4 GHz 
transmission with baud rate of 20 Ksps and Doppler frequency 
fd = 200 Hz (corresponding to vehicular velocity of 90 Km/h 
or 56 mph), then f d T  = 0.01 and f k  = 0.999. 

A useful method to obtain the sequence of matrices 
A(1), 1 = 1,. . . , p  during a training mode and for the SISO 
case (i.e. ni = 1, no = 1) is provided in [9], via higher-than- 
second-order statistics (HOS). Their method is effective and 
requires only reasonable assumptions about the transmitted se- 
quence and the noise. An analogous training method can be 
adopted for general MIMO channels. The information needed 
is only the channel mean C, the Doppler rates, the ratios Kk 
and the noise variance. In this paper we assume that these 
are known from a training phase, and focus on decision-aided 
tracking of the channel for relatively long time spans, without 
retraining. 
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111. RECEIVER STRUCTURE 

The receiver uses a Kalman filter to track the channel and a 
DFE to equalize it. The Kalman filter assumes that the DFE 
hard decisions are correct and uses them to estimate the next 
channel value, while the DFE assumes correct Kalman filter 
channel estimates, and uses them in turn to equalize the chan- 
nel. In general, the optimum decision delay A 2 0 can be 
determined analytically given a channel (see [7]). For a wide 
range of channels (including, but not limited to, non-minimum- 
phase channels), it turns out that a DFE producing decisions 
with A > 0 is optimal. Even for the few channels where 
A = 0 is best, it doesn’t degrade performance to use a DFE 
with A > 0, provided there are enough taps in the feedfor- 
ward and feedback filters. Thus, it makes sense, particularly 
for time-varying channels like the ones treated here, to use de- 
cision delays A > 0. 

But when A > 0, a time gap is created. At time t ,  when the 
last received vector is ut, the DFE produces the hard-decision 
?&A. The staggered decisions cause the Kalman filter to op- 
erate with delay, that is, operate at time t - A, since it only 
has available hard decisions from the DFE up to then. How- 
ever, the DFE design still needs channel estimates up to time 
t. Thus the receiver needs to use channel prediction to bridge 
the time gap between the Kalman channel estimation and the 
channel estimates needed for the current DFE adaptation. 

The proposed system block diagram of Fig. 2 is meant to 
show the time succession of steps (1) through (4) below. The 
notation y:; (or y,”:) means the collection of vector valued 
(or scalar) variables ynl . . . ynz or ynl . . . gnz .  In Fig. 2 the 
flow of new information is clockwise, starting from top left, 
with each of the blocks corresponding to one of the following 
actips: 
1. ht-A = x ( h t - ~ - i , U t - ~ - - l , X t - ~ - ~ - l )  

3. [WfPt,  B,Opt] = design DFE(h:-Nf) 

At-A-1 

2 .  h:-A+l = P (h t -A,  .:-A) 

4. 2 t -A  = DFE(W,oPt,B,Opt) 

.:-A 

Fig. 2. Receiver block diagram. 

The iteration starts with the well-known Kalman filter re- 
cursions denoted by x(.), which at time t yield the optimum 

linear estimator of the time-varying part of the channel i i - A  
as it was at time t - A, because it is based on the (assumed re- 
liable) DFE decisions Rt-A-1, . . . , kt-A-v-1, the received 
vector ut-A-1 and the previously estimated channel vector 
h t - ~ - l .  In the second step, P( . )  denotes a predictor that may 
exploit the additional received vectors ut, . . . Ut-A, along with 
the last Kalman estimate h t - ~  to compute the sequence of A 
predicted channels ht , . . . , ht-A+l. 

Those A predicted channels, along with the Nf - A most 
recent channel estimates from the Kalman filter, are used by 
the DFE design module (see Sect. 111-B) to design the opti- 
mum feedforward matrix filter, WfPt,  and the feedback ma- 
trix filter, Bfpt of an MMSE DFE. Finally, the newly designed 
DFE decodes one more ni-dimensional symbol ?t-A, which 
is added to the collection of past (assumed reliable) decisions, 
which will help the Kalman filter make a new channel estimate 
h t -A+l  at the next iteration, taking place at time instant t + 1. 
In the following subsections we look at the implementation of 
the two main receiver modules in greater detail. 

A. Kalman tracking and channel prediction 

For simplicity, we limit our discussion to the AR( 1) channel 
model, but the extension to higher order AR models is straight- 
forward. The channel at time t has a constant (assumed known) 
mean C and a zero-mean time-varying part ht ,  which follows 
the AR( 1) model: 

At time t ,  the (zero-mean) received vector ut is given by: 

Assuming the matrices F and G and the mean channel vector E 
are known from a preceding training phase, andA assuming the 
matrix of the most recent available decisions Xt-A-1 to be 
equal to the true Xt-A-1 defined in (8), the receiver can use 
the Kalman filter to track the channel variation ht-a,  using as 
observable the vector ut-A-1 - Xt-A-lc. The Kalman filter, 
operating with a delay A is described at time t by the series of 

The above Kalman recursions implement the optimum linear 
estimator for the time-varying part of the channel ht-a.  The 
last reliable decision made by the DFE and used by the Kalman 
filter at this time is &-&-I. For matrices F and G that are 
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multiples of the identity (produced, for instance, by uncorre- 
lated fading with the same Doppler and ratio KI, for all taps) 
fast algorithms for the above Kalman recursions can be pur- 
sued (see, e.g., [ l l]). 

For designing the DFE at time t (step 3), the N f  most recent 
channel estimates are needed, where N f  is the order of the 
matrix feedforward filter W O p t  of the DFE. Up to time t - A 
channel estimates are avfilable frpm the Kalman filter. But the 
last A channel vectors h i , .  . . , h t -A+l  have to be predicted. 
The implementation of the prediction depends upon the SNR 
of operation and how fast the channel varies. For a very slow 
varying channel, the simplest choice is to assume that the chan- 
nel remains constant, that is: 

* . .  
ht = ht-l = . . . = ht-A (13) 

where h t - ~  is already provided by the Kalman filter. 
More generally, the optimal linear predictions, given that the 

channel follows the AR( 1) model of (1 l), but ignoring the ad- 
ditional received vectors ut,. . . , U ~ - A  are: 

iit = F ~ & - A , .  . . , i i t -A+l  = F ~ & - A  (14) 

where again h t - ~  is the last Kalman channel estimate. 
The received vectors ut, . . . , u ~ - A ,  which are also avail- 

able, can be used to improve the prediction for a fast varying 
channel at high SNR. For example, one could formulate and 
optimize least-squares cost functions J(h), forcing the pre- 
dicted channel vectors h k ,  k = t ,  . . . , t - A + 1 to thevicinity 
of the values of (14), weighted by how well a certain h k  ‘‘jus- 
tifies” the received vectors ut, . . . , Ut-A (see [ 11). We do not 
pursue this prediction avenue in this paper, and all simulations 
are done using (14) for channel prediction. 

B. DFEDesign 

The design of the optimum MMSE feedforward and feed- 
back matrix filters W O p t  and Bopt of lengths N f  and Nb re- 
spectively, as well as the optimum selection of the delay A 
for any (ni, no) system is carefully solved in [7] and will not 
be repeated here. Suffice it to say that an essential part of the 
DFE design at every time instant t is the formulation of the 
noNf x ni (Nf  + v) block pre-windowed channel matrix H: 

1 0  . . .  0 G-Nf+l . . .  c t -  N, + 1 1  
v 

w h e r e C i , m  = 0,1, . . . ,  v,k = t , t - 1 ,  . . . ,  t - N f + l  
are the estimates of the no x ni channel matrices C,(k) in 
(2). It is obvious that constructing H of (15) merely ipvolves 
adding the constant part C to the long vector estimates hk, k = 
t ,  t - 1, . . . , t - N f  + 1 of the time-variant part of the channel 
(some of which are estimated via the Kalman filter and some 
are predicted), and then rearranging the resulting long vectors 
into the dimensions specified by Eq. (2). 

IV. SIMULATION RESULTS 

In all simulations presented in this section we implemented 
the receiver algorithm outlined above and compared the per- 
formance of the system, as measured by its symbol error rate 
(SER) when transmitting 4-PSK constellation points through 
(2,2) and single-user (i.e. (1 , l ) )  Ricean fading channels. We 
assumed the channel mean to be known at the beginning of 
each block of N symbols per user and tracked with the Kalman 
filter thereafter. For comparison purposes the plots include 
(dashed lines) the SER performance with the receiver hav- 
ing access to “genie-provided” perfect channel information, as 
well as that of conventional adaptive receiver algorithms, such 
as the LMS and RLS, admittedly less computationally inten- 
sive than the tracking algorithm proposed in this paper. 

The SNR is set to be the same for both users (worst-case 
scenario, because having one user stronger than others facili- 
tates decoding of every user). Also, all nine mean interfering 
channels of (3) are normalized I I d i 1 j )  I l 2  = 1, and all ratios Kk 
are chosen equal to a single K .  Thus, with c: being the noise 
variance at each receiver, the SNR plotted is the SNR of each 
interfering channel: 

since the input 4-PSK points are normalized to unit power. 
In Fig. 3 the mean channels were the normalized versions 

of (1 + j ) [ l  0.81 and (1 + j)[l 0.31 for the direct paths, and 
(1 + j ) [ l  - 0.51 for the interfering 
paths, the Doppler rate was f d T  = 0.01 (resulting in an AR(1) 
coefficient f = 0.999) and the specular-to-diffuse power ratio 
was K = 6 dB. The indicated SER performance represents 
unsupervised channel tracking for long blocks of N = 5000 
symbols per user. The proposed Kalman-aided DFE performs 
less than 1 dB from perfect channel knowledge, while LMS 
adaptive DFE fails completely with such long blocklength. In 
Fig. 4 we kept the same meun (2,2) channel, but made it vary 
faster (f = 0.99, resulting from f d T  = 0.032), set K = 10 
dB, and reduced N to 500. Performance is generally better (for 
LMS as well), and still the proposed algorithm outperforms 
LMS adaptation of the DFE. In both cases, the DFE has Nf = 
3 and Nb = 1 matrix taps, and A = 2. 

Figures 5 and 6 show simulation results for a (1,l) system 
with mean channel (1 + j)[l 2.51, K = 10 dB for both taps, 
and a DFE with A = 5, and N f  = 7 and Nb = 1 scalar 
taps. In both Figures the Doppler rate is f d T  = 0.01. How- 
ever, in Fig. 5 the channel is indeed the AR(1) model with 
f = 0.999 (derived from f d T  = O.Ol), while in Fig. 6 the 
channel is in fact generated according to Bello’s model with 
the statistics described in (5), and is only approximated by the 
AR model of (1 1) with f = 0.999. We observe in both fig- 
ures that the proposed Kalman-aided DFE outperforms con- 
ventional LMS/RLS adaptive algorithms. Note that this fact 
is more pronounced in the second case (Fig. 6), where the re- 
ceiver exploits its knowledge about the channel statistics (i.e. 

- 0.81 and (1 + j)[l 
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-c LMS-DFE u=OOOOl 1 
4 6 8  12 14 16 18 

S&, in dB 
Fig. 3. Performance of (2,2) system vs. SNR, with blocklength N = 5000, 

and channel derived from f d T  = 0.01. K = 6 dB. 

t 1 
4 6 8 10 12 14 16 

SNR, in dB 
Fig. 4. Performance of (2,2) system vs. SNR, with blocklength N = 500, 

and channel derived from f d T  = 0.032. K = 10 dB. 

the Doppler) to form a first-order autoregressive model for the 
channel. This gives much better results than plain LMS/IUS 
adaptations, which do not have an explicit mechanism of in- 
corporating known channel statistics, and only rely on careful 
selection of the parameters p and X to perform the best tracking 
they can. 

V. CONCLUSIONS 

This paper proposed a receiver structure to track and equal- 
ize a MIMO frequency selective fading channel. A Kalman 
filter was used for tracking the channel, and an MMSE DFE, 
optimized for decision delay A 2 0 to equalize the channel 
and supress IUI. The time gap between channel estimates pro- 
duced by the Kalman filter and those needed for the DFE adap- 
tation was bridged by using a simple prediction module. This 
algorithm, in exchange for larger complexity when compared 
to simple LMSRLS updates of the DFE, offers improved per- 
formance and good tracking behavior for long unsupervised 
blocks, close to the performance of the idealistic case where 
perfect channel information is available at the receiver. 
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