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ABSTRACT

This work examines a stochastic formulation of the generalized
Nash equilibrium problem (GNEP) where agents are subject to
randomness in the environment of unknown statistical distribution.
Three stochastic gradient strategies are developed by relying on a
penalty-based approach where the constrained GNEP formulation
is replaced by a penalized unconstrained formulation. It is shown
that this penalty solution is able to approach the Nash equilibrium
in a stable manner within O(μ), for small step-size values μ. The
operation of the algorithms is illustrated by considering the Cournot
competition problem.

Index Terms— Adaptive learning, generalized Nash equilib-
rium, penalized approximation, diffusion learning.

1. INTRODUCTION AND RELATED WORK

The generalized Nash equilibrium problem (GNEP) refers to a set-
ting where each agent in a collection of agents seeks to minimize its
own cost function subject to certain constraints and where both the
cost function and the constraints are generally dependent on the ac-
tions selected by the other agents [1–4]. In these types of problems,
the Nash equilibrium is a desired and stable solution since at the
Nash equilibrium no agent can benefit by unilaterally deviating from
the solution. In general, GNEP formulations do not admit closed-
form solutions. It is therefore common to appeal to penalty-based
formulations where the original cost function is modified by includ-
ing a penalty term. The purpose of the penalty term is to assign large
penalties to deviations from the constraints [5–8].

In most prior works, the individual cost functions are assumed to
be deterministic and agents are able to compute exactly their gradient
vectors [4,6,9]. However, when the agents are subject to randomness
in the environment, it is customary to define the cost functions in
terms of expectations of certain loss functions. The expectation op-
erations are in relation to the distribution of the random data. Since
this distribution is rarely known beforehand, it becomes impossible
for the agents to compute the exact gradients of their cost functions
to permit gradient-descent implementations. Instead, the agents need
to resort to stochastic gradient implementations where the actual
gradient vectors are replaced by approximations. One stochastic
implementation along these lines is considered in [10] albeit with
a vanishing step-size parameter and without constraints. The use
of step-sizes that decay to zero is problematic in scenarios that re-
quire continuous adaptation and learning. For example, in nonsta-
tionary environments, the Nash equilibrium may drift with time due
to changes in the statistical distribution of the data. When the step-
size approaches zero, adaptation stops and the resulting stochastic
gradient algorithm will lose its ability to track the drift.
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For this reason, we focus in this work on the use of constant step-
sizes to enable adaptation and learning. When this is done, gradient
noise seeps into the operation of the algorithm. By gradient noise we
mean the difference between the true gradient vector and its approx-
imation. In decaying step-size implementations, this gradient noise
component is annihilated over time by the diminishing step-size pa-
rameter at the expense of a deteriorating tracking performance. In
contrast, in the constant step-size implementation, the gradient noise
process is persistently present in the operation of the algorithm. One
main challenge in the analysis, is to establish that the stochastic-
gradient implementation is able to keep the influence of gradient
noise under check and to deliver an accurate estimation of the mini-
mizer. Arriving at these conclusions for networked agents is the key
contribution of this work. In the simulations section, we illustrate the
theoretical results and apply the algorithms to the Cournot competi-
tion problem, which is widely used in applications such as economic
trading with geographical considerations, power management over
smart grids, and resource allocation [11–13].

Notation: We use lowercase letters to denote vectors and
scalars, uppercase letters for matrices, plain letters for determin-
istic variables, and boldface letters for random variables.

2. PROBLEM FORMULATION

Consider a connected network of N agents indexed by the set N =
{1, ..., N}. The neighborhood of each agent k, denoted by Nk, in-
cludes agent k and the neighboring agents connected to k. We denote
the action of each agent k by a vector wk ∈ R

Mk and associate with
k an individual convex cost function denoted by Jk(·). The argu-
ment of Jk(·) does not depend solely on wk but also on the action
vectors of the neighboring agents. Let us collect the actions of all

agents in Nk into the block vector wk = col{w�; � ∈ Nk} ∈ R
Mk

,
and the actions of all agents in N into w = col{w1, . . . , wN} ∈ R

M

where

Mk �
∑
�∈Nk

M�, M �
N∑
�=1

M� (1)

We consider that the action of each agent k should satisfy a set of
local constraints {gk,q(wk) ≤ 0, q = 1, . . . , Lk}. The local con-
straint functions {gk,q(wk)} are known to agent k and assumed to
be twice-differentiable and convex in wk. We further assume that
the constraints are shared by the neighbors, i.e., if the argument of
gk,q(w

k) contains the action of some neighbor �, then agent � is
subject to the same constraint gk,q(w

k) ≤ 0. Figure 1 illustrates
an example showing the dependence of the cost functions and the
shared constraint within agents 3 and 5 over a network topology. We
note that while there is no direct link between agents 2 and 4, the ac-
tion vectors w2 and w4 are coupled through the intermediate agent
3. Therefore, in general, the actions of agents are affected explicitly



Fig. 1. Illustration of the cost functions and the shared constraints
over a network topology.

by the neighbors and also implicitly by other agents in the network.
This scenario is common in applications [5, 6, 9, 14].

Each agent k then seeks an optimal action vector that solves the
following constrained optimization problem:{

min
wk

Jk(w
k)

subject to gk,q(w
k) ≤ 0, q = 1, . . . , Lk

(2)

which is known as the generalized Nash equilibrium problem
(GNEP).

For convenience, we shall collect all distinct individual con-
straints into a global set denoted by {gq(w) ≤ 0, q = 1, . . . , L} by
removing the repeated shared constraints. We assume that the GNEP
in (2) is feasible for each agent, meaning that the set {w|gq(w) ≤
0, q = 1, . . . , L} is non-empty. In this work, we focus on proposing
distributed learning strategies by which agents can adaptively learn
to solve (2) using local observations of the actions of neighboring
agents. Although the treatment can be extended to more general
cases, we illustrate the main construction and results by focusing in
this manuscript on the important case of quadratic cost functions,
namely, on functions of the following form:

Jk(w
k) = E[wTBkw + bTkw + εk]

= E

⎡⎣ ∑
s∈Nk

∑
�∈Nk

wT
sB

k
s�w� +

∑
�∈Nk

bTk�w� + εk

⎤⎦
=

∑
s∈Nk

∑
�∈Nk

wT
sB

k
s�w� +

∑
�∈Nk

bTk�w� + εk (3)

where Bk is a random symmetric matrix of size Mk ×Mk, bk is a
random vector of size 1 × Mk, εk is a random scalar variable with
mean εk. In (3), it holds that the Jk depends solely on wk instead
of the entire vector w if Bk and bk are constructed in the following
manner. We partitioned Bk and bk, respectively, into block matrices
{Bk

s� ∈ R
Ms×M�} and block vectors {bk� ∈ R

M�×1} in confor-
mity with the block structure of wk. We then set bk� = 0M�×1 and
Bk

s� = 0Ms×M� if s /∈ Nk or � /∈ Nk. Furthermore, we denote the
means of these quantities by Bk

s� = EBk
s� and bk� = Ebk�. Note

that since Bk is symmetric, we have Bk
s� = BkT

�s and Bk
s� = BkT

�s

for any s and �. The expectation in (3) is over the distribution of the
random data {Bk, bk, εk}, which are assumed to be independent.

Now note that the gradient vector of Jk(w
k) with respect to wT

k

is the Mk × 1 vector given by

∇wT
k
Jk(w

k) =
∑
�∈Nk

2Bk
k�w� + bkk (4)

If we collect these individual gradient vectors into

F (w) � col{∇wT
1
J1(w

1), ...,∇wT
N
JN (wN )} (5)

then this block column vector satisfies

F (w) = Bw + b (6)

where b = col{b11, ..., bNN} and

B �

⎡⎢⎣ 2B1
11 · · · 2B1

1N

...
. . .

...

2BN
N1 · · · 2BN

NN

⎤⎥⎦ ∈ R
M×M

(7)

To continue, we introduce the following condition.

Condition 1. There exists a positive constant ν such that B ≥ νI ,
i.e., for any M × 1 vector a we have

aT (B − νI) a ≥ 0 ⇔ aTBa ≥ ν‖a‖2 (8)

�
Note that since B is not necessarily symmetric, we know from [15,
pp. 259] that Condition 1 holds if, and only if, the symmetric part of
B satisfies:

1

2
(B +BT) ≥ νI (9)

It follows from this condition that the largest singular value of B,
denoted by σmax, is greater than or equal to ν since

σmax = ‖B‖ ≥
∥∥∥∥12(B +BT)

∥∥∥∥ ≥ ν (10)

Under Condition 1, it is easy to verify that for any two action profiles
w = w◦ and w = w• we have

(w◦ − w•)T[F (w◦)− F (w•)] ≥ ν‖w◦ − w•‖2 (11)

which means that the mapping F (w) : R
M → R

M is strongly
monotone [16].

3. STOCHASTIC PENALTY-BASED LEARNING
3.1. Penalty Approximation for Coupled Constraints

Solving the constrained optimization problem (2) is generally de-
manding and may not admit a closed-form solution. Alternatively,
in this work, we resort to a penalty-based approach to replace the
original problem by an unconstrained optimization problem and then
show that the solution to the approximate problem tends asymptoti-
cally with the penalty parameter to the desired solution to (2). More
importantly, we will show that the penalty-based approach enables
the agents to employ adaptive learning strategies, which in turn en-
dow the agents with the ability to track variations in the location of
the Nash equilibrium due to changes that may occur in the constraint
conditions or cost measures.

The main motivation for penalty methods is to assign a large
penalty weight whenever constraints are violated and a smaller or
zero weight when the constraints are satisfied [7, 17, 18]. More
specifically, problem (2) is replaced by the following unconstrained
formulation:

min
wk

Jk(w
k) + ρpk(w

k) (12)

where ρ ≥ 0 is a penalty parameter, pk(w
k) denotes the penalty

function for agent k and is assumed to be of the following aggregate
form, with one penalty factor applied to each constraint:

pk(w
k) =

Lk∑
q=1

θ
(
gk,q(w

k)
)

(13)



where θ(x) is a convex function. The penalty factor θ(·) returns
zero value if the constraint is satisfied, i.e., when gk,q(w

k) ≤ 0, and
introduces a large positive penalty if the constraint is violated, i.e.,
when gk,q(w

k) > 0. While there exist numerous penalty-type func-
tions in the literature, e.g., γ-norm [19], exponential and shifted log-
arithmic functions [20], in this work we assume that θ(x) is chosen
to be continuous, convex, nondecreasing, and twice-differentiable —
see [7, 21] and (43) for an example.

We denote the penalized cost by

Jp
k (w

k) � Jk(w
k) + ρpk(w

k) (14)

An action profile w� that minimizes simultaneously all penalized
costs {Jp

k (w
k)} is called a Nash equilibrium for the penalized for-

mulation (12). By the results in [7, pp. 3930], we get that the dis-
tance between the solutions to problem (2) and problem (12) can be
made arbitrarily small by choosing ρ appropriately. Consequently,
the resulting Nash equilibrium for the unconstrained problem in (12)
can be arbitrarily close to a Nash equilibrium for the GNEP in (2).
Since the {Jp

k (w
k)} are convex functions, it follows from results

in [9, pp. 522] that a Nash equilibrium exists. The following theo-
rem ensures its uniqueness.

Theorem 1. (Uniqueness): Under Condition 1 and for any convex
choice of θ(x), problem (12) has a unique Nash equilibrium w�, and
it satisfies

F p(w�) � Bw� + b+ ρ∇wTp(w
�) = 0 (15)

where
F p(w) � col{∇wT

1
Jp
1 (w

1), ...,∇wT
N
Jp
N (wN )} (16)

p(w) �
L∑

q=1

θ (gq(w)) (17)

�
We note that it holds that

∇wTp(w) = col{∇wT
1
p1(w

1), ...,∇wT
N
pN (wN )} (18)

3.2. Stochastic Learning Dynamics
Again, a closed form solution to problem (12) is not generally pos-
sible. If this were possible, then agents could learn w� given knowl-
edge of the other agents’ actions; this solution method would lead
to the best response dynamics [22]. Since this approach is rarely
applicable, agents can instead appeal to learning strategies where
they gradually approach the desired w� through successive estima-
tion from streaming data. For example, one well-known solution is
to use the gradient information ∇wT

k
Jp
k (w

k) to update the agents’

actions at discrete-time instants i [23–25]. However, knowledge of
the mean quantities {Bk

k�, bkk} is required to compute ∇wT
k
Jk(w

k).

When the statistics of Bk
k� and bkk are unavailable, we need to re-

sort to instantaneous realizations of these random variables, which
we denote by Bk

k�,i and bkk,i at iteration i. We assume these real-
izations are independent over both k, �, and i. Using the realizations
{Bk

k�,i, bkk,i}, agents can update their actions at each time instant i
by employing the following localized stochastic-gradient rule:

wk,i = wk,i−1 − μ

⎛⎝ ∑
�∈Nk

2Bk
k�,iw�,i−1 + bkk,i

⎞⎠
− μρ∇wT

k
pk(w

k
i−1) (19)

where μ is the step-size. Alternatively, motivated by the arguments
from [7] and [26], one can implement (19) incrementally by using
a two-step learning strategy to improve the individual and penalty

costs separately. For example, agent k can use an Adapt-then-
Penalize (ATP) diffusion learning strategy to update first the iterate
along the negative gradient direction of Jk(·) and then correct along
the gradient of the penalty term:

(ATP)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ψk,i = wk,i−1 − μ

⎛⎝ ∑
�∈Nk

2Bk
k�,iw�,i−1 + bkk,i

⎞⎠ (20)

wk,i = ψk,i − μρ∇wT
k
pk(ψ

k
i ) (21)

Agents can also switch the order of these two steps and use a
Penalize-then-Adapt (PTA) diffusion learning strategy:

(PTA)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ψk,i = wk,i−1 − μρ∇wT

k
pk(w

k
i−1) (22)

wk,i = ψk,i − μ

⎛⎝ ∑
�∈Nk

2Bk
k�,iψ�,i + bkk,i

⎞⎠ (23)

Observe that we are denoting the weight iterates in boldface since
they are random quantities due to the randomness in the realizations
{Bk

k�,i, bkk,i}.

4. PERFORMANCE ANALYSIS
We now examine the convergence and stability properties of these
stochastic algorithms. In particular, we examine how close their lim-
iting point gets to the equilibrium point, w�. To continue, we intro-
duce the following condition on the penalty function. This condition
is not restrictive since the choice of the penalty function is under the
designer’s control.

Condition 2. Consider two arbitrary block vectors w◦ and w• col-
lecting all agents’ actions. For each k, and the corresponding wk

◦
and wk

• , the gradient vector ∇wT
k
pk(·) is assumed to satisfy the Lip-

schitz condition:∥∥∥∇wT
k
pk(w

k
◦)−∇wT

k
pk(w

k
•)
∥∥∥ ≤ γk‖wk

◦ − wk
•‖ (24)

where γk is a positive constant. �

4.1. Stochastic Gradient Dynamics
We can describe the evolution of the dynamics of the first algorithm
(19) in the following manner:

wi = wi−1 − μ(Biwi−1 + bi)− μρ∇wTp(wi−1) (25)

in terms of the aggregate quantities wi � col{w1,i, ...,wN,i}, bi �
col{b11,i, ..., bNN,i}, and

Bi �

⎡⎢⎣ 2B1
11,i · · · 2B1

1N,i

...
. . .

...

2BN
N1,i · · · 2BN

NN,i

⎤⎥⎦ (26)

Subtracting w� from both sides of (25), introducing the error vector
w̃i = w� −wi and using (15) we find that

w̃i = w̃i−1 − μ[F p(w�)− F p(wi−1)] + μsi(wi−1) (27)

where si(w) = −B̃iw − b̃i is the gradient noise, B̃i = B − Bi

and b̃i = b − bi. From the assumed independence of Bi, bi, and
wi−1, it can be verified that

Esi(wi−1) = 0 (28)

E‖si(wi−1)‖2 ≤ αE‖w̃i−1‖2 + β (29)

for some constants α and β. The proof of the following result is
omitted for brevity.



Theorem 2. (Mean-square-error stability) For the stochastic gra-
dient implementation (19), if the step-size μ satisfies

0 < μ <
2ν

(σmax + ρδp)2 + α
(30)

where α > 0 is a constant parameter, δp �
√∑N

k=1 γ
2
k , and σmax

is the largest singular value of B, then it holds that

lim
i→∞

supE‖w̃i‖2 = O(μ) (31)

�
4.2. Stochastic ATP and PTA Strategies
We can aggregate the ATP and PTA strategies in (20)–(21) and (22)–
(23), respectively, across all agents into the following unified de-
scription:

wi = ψi−1 − c1μρ∇wTp(ψi−1) (32)

φi = wi − μ(Biwi + bi) (33)

ψi = φi − c2μρ∇wTp(φi) (34)

for some constants (c1, c2). By setting (c1, c2) = (0, 1) we get
the ATP recursions (20)–(21) while for (c1, c2) = (1, 0) we obtain
the PTA recursions (22)–(23). The following result establishes that
without gradient noise, the deterministic version of recursions (32)–
(34) converges to a unique fixed point.

Theorem 3. (Unique fixed point) Without gradient noise, the map-
ping from ψi−1 to ψi in recursions (32)–(34) converges to a unique
fixed point, denoted by ψ∞, for small step-sizes that satisfy:

0 < μ <
2ν

σ2
max + ρ2δ2p

(35)

�
Let us denote by w∞ the fixed point corresponding to the determinis-
tic variable wi, and introduce the fixed-point error w̃∞

i = w∞−wi

for the stochastic variable wi with gradient noise. The following
theorem shows that the variance of this error is bounded.

Theorem 4. (Bounded MSE) For the stochastic recursion (32)–
(34), if the step-size μ satisfies

0 < μ <
2ν

σ2
max + ρ2δ2p + α

(36)

then it holds that

lim
i→∞

supE‖w̃∞
i ‖2 = O(μ) (37)

�
We note that condition (36) for the stochastic recursion implies con-
dition (35) for the deterministic case. Therefore, any step-size μ
satisfying (36) ensures the existence of the fixed point w∞. Further-
more, comparing (36) with (30) we observe that the stochastic ATP
and PTA learning strategies allow to use a larger step-size, which
can assist with faster convergence performance. However, the fixed
point w∞ would be different from the Nash equilibrium, w�. In
the following theorem, we examine the bias w̃ = w� − w∞. We
show that for small μ, the norm of the bias is asymptotically upper
bounded by O(μ).

Theorem 5. (Small bias) For sufficiently small step-size μ satisfy-
ing the following condition:

0 < μ <
2ν

σ2
max + 2ρ2δ2p

(38)

it holds that

lim
i→∞

supE‖w� −wi‖2 ≤ O(μ) +O(μ2ρ2) (39)

�

5. SIMULATION RESULTS
In this section, we consider the Cournot competition problem [11,
12] with stochastic parameters. Thus, consider a network with
N = 10 factories and L = 3 markets connected to the factories as
shown in Fig. 2. Each factory k needs to determine a continuous
quantity of products to be produced and delivered to each connected
market, which is defined as the action of factory k denoted by
wk = [wk(1), ..., wk(Mk)]

T where we assumed Mk markets are
connected to factory k. The individual cost function of each factory
k is defined as

Jk(w
k) = E

(
Ck,i(wk)−

∑
u��

wk(u) · P�,i(r�)

)
(40)

where

Ck(wk) = (ᾱk + vα
k )

(
Mk∑
n=1

wk(n)

)2

(41)

is a random quadratic production cost function to generate
∑Mk

n=1

wk(n) amount of products for ᾱk > 0 and with some random dis-
turbance vα

k,i, and

P�,i(r�) = q̄� − (s̄� + vs
�,i)r� (42)

is the price of products in market � and r� is the total amount of
products sold in market �, e.g., r2 = w3(2)+w4(1)+w5(1)+w6(2)
and so on. In (40), we use the notation u � � to represent that
wk(u) is the quantity of factory k sold in market �. We set ᾱk = 1,
q̄� = 3, and s̄� = 1 for all k and �. The random variables vα

k,i

and vs
�,i for all k, � and i are assumed to be independent and follow

normal distributions with zero mean and standard deviation 10. Each
market � has an upper bound of 0.5 for the capacity of products, i.e.,
r(�) ≤ 0.5. The penalty function θ(x) is chosen as [7]:

θ(x) � max

{
0,

x3√
x2 + η2

}
(43)

with η = 0.015. We set the penalty parameter ρ = 1000 and the
step-size μ = 0.001. In Fig. 3, we simulate the learning curves for
the stochastic gradient, ATP, and PTA strategies. To be specific, we
compare the mean-squared error E‖w� −wi‖2 in these three cases.
We observe from the figure that while the three strategies exhibit ap-
proximately the same steady-state performance, the stochastic ATP
and PTA strategies have better convergence performance in the tran-
sient phase.

Fig. 2. Network topology used for the simulations of networked
Cournot competition.
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Fig. 3. Learning curves for the stochastic gradient dynamic, diffu-
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