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ABSTRACT

In this paper, we study diffusion social learning over weakly-

connected graphs. We show that the asymmetric flow of information

hinders the learning abilities of certain agents regardless of their

local observations. Under some circumstances that we clarify in this

work, a scenario of total influence (or “mind-control”) arises where a

set of influential agents ends up shaping the beliefs of non-influential

agents. We derive useful closed-form expressions that characterize

this influence, and which can be used to motivate design problems to

control it. We provide simulation examples to illustrate the results.

Index Terms— Weakly-connected networks, social learning,

Bayesian update, diffusion strategy, leader-follower relationship.

1. INTRODUCTION AND RELATED WORKS

Social interactions among networked agents influence the beliefs of

the agents about the state of nature in at least two ways: first, through

the diffusion of information from neighboring agents and, second,

through the sensing of local information by the agents. The nature

of the graph topology over which these interactions occur plays an

important role in determining the ultimate opinion formation of the

agents. A critical difference in behavior arises between strongly-

connected and weakly-connected graphs. In the latter case, a leader-

follower relationship develops with some influential agents dictat-

ing the beliefs of other agents regardless of the observations that

are sensed by these other agents. This situation leads to a total influ-
ence (or “mind-control”) scenario. We examine the conditions under

which this situation arises and derive closed-form expressions that

characterize the influence behavior. The expressions can be used to

motivate design problems to control the behavior.

Thus, consider a social network consisting of N agents con-

nected by some graph. Let N = {1, 2, . . . , N} denote the indexes

of the agents. We assign a pair of nonnegative weights, {ak�, a�k},

to the edge connecting any two agents k and �. The scalar a�k rep-

resents the weight with which agent k scales the data arriving from

agent � and, similarly, for ak�. Let Nk denote the neighborhood of

agent k, which consists of all agents connected to k by edges. Each

agent k scales data arriving from its neighbors in a convex manner,

i.e.,

a�k ≥ 0,
∑
�∈Nk

a�k = 1, a�k = 0 if � /∈ Nk (1)

We denote by Θ the finite set of all possible states, and by θ◦ ∈ Θ the

unknown true event that has happened. The objective of the network
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is to learn this true state. For this purpose, agents will be continually

updating their beliefs about the true state through a localized cooper-

ative process. Initially, at time i = 0, each agent k starts from some

prior belief, denoted by the function μk,0(θ) ∈ [0, 1]. This function

represents the probability distribution over the events θ ∈ Θ. For

subsequent time instants i ≥ 1, the private belief of agent k is de-

noted by μk,i(θ) ∈ [0, 1]. We assume that, at each time i ≥ 1, every

agent k observes a realization of some signal ξk,i that is generated

according to a likelihood function Lk(· | θ◦). We also assume that

for each agent k, the signals {ξk,i} belong to a finite signal space

denoted by Zk and that these signals are temporally independent.

Diffusion social learning provides a mechanism by which agents

can process the information they receive from their private signals

and from their neighbors [1]. At every time i ≥ 1, each agent k first

updates its private belief, μk,i−1(θ), based on its observed private

signal ξk,i by means of the Bayesian rule. This step leads to an in-

termediate belief ψk,i(θ). After learning from its observed signals,

agent k can then learn from its social neighbors through cooperation.

The combination of these two steps corresponds to the diffusion so-

cial learning model, written as (note that, in our notation, we use

boldface letters to refer to random variables):⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ψk,i(θ) =

μk,i−1(θ)Lk(ξk,i|θ)∑
θ′∈Θ μk,i−1(θ

′)Lk(ξk,i|θ′)
μk,i(θ) =

∑
�∈Nk

a�k ψ�,i(θ)
(2)

A consensus-based strategy can also be used, as studied in [2]. We

focus on the diffusion learning scheme (2) due to its enhanced per-

formance, as observed in [1] and as further discussed in [3,4]. Diffu-

sion and consensus strategies are examples of the broad class of non-

Bayesian learning models where agents communicate locally and

aggregate beliefs across neighborhood — see also [5–9]. There are

other Bayesian-learning models [10–15], where agents rely solely

on Bayes’ rule to update their beliefs.

The formulations in [1, 2] consider the case when the private

signals (observations) of the agents do not hold enough information

about the true state, so that agents are motivated to cooperate to iden-

tify θ◦. This situation is modeled by assuming that each agent k has

a subset of indistinguishable states Θk ⊆ Θ, such that:

Lk(ζk|θ) = Lk(ζk|θ◦) (3)

for any ζk ∈ Zk and θ ∈ Θk. However, through cooperation with

their neighbors, agents are able to identify the true state by assuming

the identifiability condition:⋂
k∈N

Θk = {θ◦} (4)



We further assume that, for each agent k, there exists at least one

prevailing signal ζ◦k , such that

Lk(ζ
◦
k |θ◦)− Lk(ζ

◦
k |θ) ≥ 0, ∀θ ∈ Θ \Θk (5)

and that there exists at least one agent with a positive prior belief

about the true state θ◦, i.e.,

μk,0(θ
◦) > 0 (6)

for some k ∈ N . Under these conditions, it was shown in [1] that

the agents are able to learn the true state asymptotically, i.e.,

lim
i→∞

μk,i(θ
◦) a.s.

= 1 (7)

for any k ∈ N . This result was derived for strongly-connected

graphs where a path connecting any two arbitrary agents is always

possible, in either direction, including self-loops around some nodes.

Over such topology, all agents are able to learn the truth even when

the local observations at the agents may carry information levels of

varying quality with some agents being more informed than others.

In this work, we will examine how this result is affected over

weakly-connected graphs, as opposed to strongly-connected graphs.

Over a weak topology, information may only flow in one direction

over a select number of edges, with information never flowing back

from the receiving agents to the originating agents (even indirectly

through nontrivial paths). Such configuration, whose influence on

distributed inference strategies is examined in [16,17], is common in

practice. For example, in Twitter networks, it is not unusual for some

influential agents (e.g., celebrities) to have a multitude of followers,

while the influential agent itself may not be receiving information

from these followers. A similar effect arises when social networks

operate in the presence of stubborn agents [6, 18]; these are agents

that insist on their opinions regardless of the evidence provided by

local observations or by neighboring agents. It turns out that weak

graphs influence the evolution of the agents’ beliefs in a critical way.

2. WEAKLY-CONNECTED GRAPHS

We first review the model for weakly-connected graphs following

[16, 17]. In simple terms, weakly-connected networks consist of

multiple sub-networks where at least one sub-network feeds infor-

mation forward to some other sub-network but never receives in-

formation back from this sub-network — see Fig.1 for an example

involving four sub-networks.

Fig. 1: An example of a weakly-connected network.

The agents in each sub-network observe signals related to their

own true states denoted by {θ◦1 , θ◦2 , θ◦3 , θ◦4}, which may not be nec-

essarily the same (a special case of a weak topology was considered

in [9], where it was assumed that all sub-networks have the same true

state). Each of the two sub-networks on top is strongly-connected.

Therefore, if their agents follow the model of diffusion social learn-

ing (2), they can asymptotically learn their true states. The third

and fourth sub-networks in the bottom are seen to receive informa-

tion from the other sub-networks without feeding information back

to them. We would like to examine whether this external influence

limits the truth learning of non-influential agents, and under what

circumstances.

For more general networks, we adopt the same notation and

terminology from [16, 17], which we repeat here briefly for con-

venience. We consider networks that consist of two types of sub-

networks: S strongly-connected sub-networks and R connected

sub-networks. The interaction between S and R sub-networks

is not symmetric: information can flow from S (“sending”) sub-

networks to R (“receiving”) sub-networks but not the other way

around. We index each strongly-connected sub-network by s where

s = {1, 2 · · · , S}. Similarly, we index each receiving sub-network

by r where r = {S + 1, , . . . , S + R}. Each sub-network s has

Ns agents. Similarly, each sub-network r has Nr agents. We

denote by NgS and NgR the total number of agents in the S sub-

networks and R sub-networks, respectively. We continue to denote

by N = {1, 2, , · · · , N} the indexes of the agents. We assume that

the agents are numbered such that the indexes of N represent first

the agents from the S sub-networks, followed by those from the R
sub-networks. In this way, the structure of the network can be rep-

resented by a large N × N combination matrix A of the following

upper-block triangular form [16, 17, 19]:

Subnetworks:1,2,...,S︷ ︸︸ ︷ Subnetworks:S+1,S+2,...,S+R︷ ︸︸ ︷
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1 0 . . . 0 A1,S+1 A1,S+2 . . . A1,S+R

0 A2 . . . 0 A2,S+1 A2,S+2 . . . A2,S+R

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

. . .
.
.
.

0 0 . . . AS AS,S+1 AS,S+2 . . . AS,S+R

0 0 . . . 0 AS+1 AS+1,S+2 . . . AS+1,S+R

0 0 . . . 0 0 AS+2 . . . AS+2,S+R

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

. . .
.
.
.

0 0 . . . 0 0 0 . . . AS+R

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)

The matrices {A1, · · · , AS} on the upper left corner are left-

stochastic primitive matrices corresponding to the S strongly-

connected sub-networks. Likewise, the matrices {AS+1, · · · , AS+R}
in the lower right-most block correspond to the internal weights

of the R sub-networks. These matrices are not necessarily left-

stochastic because they do not include the coefficients over the links

that connect the R sub-networks to the S sub-networks. We denote

the block structure of A in (8) by:

A
Δ
=

[
TSS TSR

0 TRR

]
(9)

and introduce the NgS ×NgR matrix

W
Δ
= TSR(I − TRR)

−1
(10)

which can be shown to be left-stochastic [16].



3. DIFFUSION LEARNING OVER WEAK GRAPHS

We now examine the belief evolution of agents in weakly-connected

networks. We still denote by Θ the set of all possible states, and

we assume that Θ is uniform across all sub-networks. However, we

allow each sub-network to have its own true state, which may differ

from one sub-network to another. We denote by θ◦s the true state

of sending sub-network s and by θ◦r the true state of receiving sub-

network r, where both θ◦s and θ◦r are in Θ. If agent k belongs to

sub-network s, then according to (7) and the results in [1], it holds

that:

lim
i→∞

μk,i(θ
◦
s )

a.s.
= 1 (11)

The question that we want to examine is how the beliefs of the agents

in the receiving sub-networks are affected. These agents are now in-

fluenced by the beliefs of the S−type groups. Since this external

influence carries information not related to the true state of each re-

ceiving sub-network, the receiving agents may not be able to learn

their own true states.

Thus, in a manner similar to (3), for any agent k that belongs to

sub-network r, we assume that there exists a subset of states Θk ⊆ Θ
such that:

Lk(ζk|θ) = Lk(ζk|θ◦r ), ∀ ζk ∈ Zk, θ ∈ Θk (12)

Moreover, we assume a scenario in which the private signals of

agents in the receiving sub-networks are not informative enough

to let their agents discover that the true states of the sending sub-

networks do not represent their own truth. That is, we are assuming

for now that the true state θ◦s , of each sub-network s, belongs to the

indistinguishable set Θk:

θ◦s ∈ Θk (13)

for any s ∈ {1, 2 . . . , S} and agent k belongs to group R. Under

(13), it will hold that the interaction with the S sub-networks ends up

forcing the receiving agents to focus their beliefs on the true states

of the S−type. The exact result can be stated as follows. We first let

μS,i(θ)
Δ
= col

{
μ1,i(θ),μ2,i(θ), . . . ,μNgS ,i(θ)

}
(14)

μR,i(θ)
Δ
= col

{
μNgS+1,i(θ),μNgS+2,i(θ), . . . ,μN,i(θ)

}
(15)

collect all beliefs from all agents in the S and R sub-networks re-

spectively.

Theorem 1 (Limiting Beliefs for Receiving Agents) Under (13),
it holds that

lim
i→∞

μR,i(θ) =WT
(
lim
i→∞

μS,i(θ)
)

(16)

Proof: Omitted for brevity. �
We expand (16) to clarify its meaning. Let

eθ,θ◦s
Δ
=

{
1Ns , if θ = θ◦s
0Ns , otherwise

(17)

where 1Ns denotes a column vector of ones of lengthNs. Similarly,

0Ns denotes a column vector of zeros of length Ns. Now, let wT
k

denote the row of WT that corresponds to agent k in sub-network1

r. We partition it into

wT
k =

[
wT

k,N1
wT

k,N2
. . . , wT

k,NS

]
(18)

1The real index of the row of WT that corresponds to agent k is k−NgS .

By examining (16), we conclude that the distribution for each agent

k in an R−type sub-network converges to a combination of the var-

ious vectors {eθ,θ◦s }, namely,

lim
i→∞

μk,i(θ) = qk(θ)
Δ
=

S∑
s=1

wT
k,Ns

eθ,θ◦s (19)

This result shows that the beliefs of receiving agents converge to a

distribution whose support is limited to the true states of the send-

ing sub-networks, i.e., qk(θ) = 0 for any θ �= θ◦s and any s ∈
{1, 2, · · · , S}. Moreover, to obtain the value of qk(.) at any true

state θ◦s , the elements of the corresponding blocks in wk will need

to be summed. Note that this is a valid probability measure since W
is left-stochastic. This “total influence” or “mind-control” scenario

arises in the presence of assumption (13), under which the private

signals of receiving agents are not informative enough so that agents

are naturally driven to be under the influence of the sending sub-

networks. This phenomenon is ubiquitous in the current information

era; huge amounts of information are easily available to individuals

whose limited experiences may not enable them to identify truthful

information with confidence.

4. DIFFUSION LEARNING WITH SELF-AWARENESS

Now, assumption (13) is not always guaranteed to occur. It is easy to

construct a counter-example that shows that when (13) is not met, the

sending agents cannot fully control the receiving agents, and, more-

over, the beliefs of the receiving agents will not be able to approach a

fixed asymptotic distribution. We are interested in knowing whether

the total influence situation can be restored even when assumption

(13) is not satisfied anymore. We show next that this is possible by

incorporating an element of self-awareness into the learning process.

We modify the diffusion strategy (2) by incorporating a non-

negative scalar γk,i into the first step. This factor enables agents to

assign more or less weight to their local information in comparison

to the information received from their neighbors. Specifically, we

modify (2) as follows:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ψk,i(θ) = (1− γk,i)μk,i−1(θ)

+ γk,i
μk,i−1(θ)Lk(ξk,i|θ)∑

θ′∈Θ μk,i−1(θ
′)Lk(ξk,i|θ′)

μk,i(θ) =
∑
�∈Nk

a�kψ�,i(θ)

(20)

where γk,i ∈ [0, 1] is a scalar variable. Observe that the interme-

diate belief ψk,i(θ) of agent k is now a combination of its prior

belief μk,i−1(θ) and the Bayesian update. The scalar γk,i repre-

sents the amount of trust that agent k gives to its private signal and

how it is balancing this trust between the new observation and its

own past belief. This weight can also model the lack of an obser-

vational signal at time instant i. This model was studied for sin-
gle stand-alone agents in [7, 20] and was motivated as a mechanism

for self-control and temptation. We analyze this model over graphs

now, where coupling exists among agents. Specifically, we consider

weakly-connected graphs and establish two results (their proofs are

omitted for brevity). The first result is related to the sending agents

and the second result is related to the receiving agents.

Theorem 2 (Truth Learning by Self-Aware Sending Agents )
Assume that limi→∞ γk,i �= 0 for any sending agent k. Then, un-
der assumptions (4)–(6), self-aware sending agents learn the truth



asymptotically and condition (7) continues to hold for any sending
agent k. �

Sending agents in a strongly-connected sub-network share together

information related to one common parameter and cooperate to-

gether to find their true state. Therefore, whether sending agents are

self-aware or not, they can always learn the truth.

We write for each agent k in a receiving sub-network r, γk,i =
τk,iγmax, where τk,i and γmax are both positive scalars less than

one.

Theorem 3 (Learning by Self-Aware Receiving Agents) The be-
liefs of self-aware receiving agents are confined as follows:

lim sup
i→∞

μR,i(θ) �WT
(
lim
i→∞

μS,i(θ)
)
+ γmaxC1NgR (21a)

lim inf
i→∞

μR,i(θ) �WT
(
lim
i→∞

μS,i(θ)
)
− γmaxC1NgR (21b)

where C = (I − TT
RR)

−1 is an NgR ×NgR matrix. �

Results (21a)–(21b) coincides with that of Theorem 1, but with an

additional O(γmax) term. This means that if each receiving agent

chooses the γ−coefficient to be small enough, then its belief con-

verges to the same distribution (16). When agent k gives a small

weight to its Bayesian update, it means that it is giving its current

signal ξk,i a small role to play in affecting its belief formation at

time i. In this way, its belief update is mainly affected by its inter-

action with influential agents and with neighbors that are also under

the influence of sending agents. Therefore, with time, these circum-

stances will promote a leader-follower relationship in the network.

In other words, when nodes follow the influential agents in a blind

manner, without employing self-awareness or critical analysis, the

receiving sub-networks will be driven away from the truth and come

under total indoctrination by the influential agents.

5. SIMULATION RESULTS

We illustrate the previous results for weakly-connected networks by

using the same numerical network structure from [16, 17]. We as-

sume that the social network has N = 8 agents interconnected as

shown in Fig. 2, with the following combination matrix:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.2 0.2 0.8 0 0 0 0 0
0.5 0.4 0.1 0 0 0.2 0 0.4
0.3 0.4 0.1 0 0 0.1 0 0
0 0 0 0.4 0.3 0.3 0 0
0 0 0 0.6 0.7 0 0 0

0 0 0 0 0 0.2 0.3 0.2
0 0 0 0 0 0.1 0.5 0.3
0 0 0 0 0 0.1 0.2 0.1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(22)

We assume that there are 3 possible states Θ = {θ◦1 , θ◦2 , θ◦3} that

represent respectively the true events of the first, second and third

sub-networks. We further assume that the observational signals of

each agent k are binary and belong to Zk = {H,T} where H de-

notes “head” and T denotes “tail”.

Fig. 2: A weakly-connected network [16, 17].

The likelihood of the head signals for each agent k is given by

the following 3× 8 matrix:

L(H) =

⎡
⎣ 5/8 3/4 1/3 7/8 5/8 1/3 1/4 5/8

5/8 1/4 1/6 7/8 2/3 1/3 1/4 5/8
1/4 3/4 1/6 1/3 2/3 1/3 1/4 5/8

⎤
⎦

where each (j, k)-th element of this matrix corresponds toLk(H/θj),
i.e., each column corresponds to one agent and each row to one net-

work state. The likelihood of the tail signal isL(T ) = 13×8−L(H).
We observe from L(H) that assumption (13) is met here where for

agent k in the receiving sub-network (k > 5) we have Lk(ζk|θ◦1) =
Lk(ζk|θ◦2) = Lk(ζk|θ◦3) for both cases in which ζk is either head or

tail. We further assume that each agent starts at time i = 0 with an

initial belief that is uniform over Θ and then updates it over time ac-

cording to the model described in (2). Then, we know from [1] that

limi→∞ μk,i(θ
◦
1) = 1 for k = 1, 2, 3 and limi→∞ μk,i(θ

◦
2) = 1

for k = 4, 5. Now for the agents of the receiving sub-network, we

compute W using (10):

WT =

⎡
⎣ 0 0.4045 0.1489 0.4466 0

0 0.5267 0.1183 0.3550 0
0 0.7099 0.0725 0.2176 0

⎤
⎦ (23)

The rows of WT correspond respectively to agents 6, 7 and 8. Each

row is partitioned into two blocks: the first block is of lengthN1 = 3
that corresponds to θ◦1 and the second block is of lengthN2 = 2 that

corresponds to θ◦2 . Then, by (19), we compute the limiting beliefs at

θ◦1 and θ◦2 , by summing the elements of the corresponding blocks:⎡
⎣ q6(θ

◦
1)

q7(θ
◦
1)

q8(θ
◦
1)

⎤
⎦=

⎡
⎣ 0.5534

0.6450
0.7824

⎤
⎦ ,

⎡
⎣ q6(θ

◦
2)

q7(θ
◦
2)

q8(θ
◦
2)

⎤
⎦=

⎡
⎣ 0.4466

0.3550
0.2176

⎤
⎦ (24)

We run this example for 5000 time iterations. Figure 3 shows the

evolution of μk,i(θ
◦
1) and μk,i(θ

◦
2) of agents in the receiving sub-

network (k = 6, 7, 8), and their convergence to the same probability

distribution (24) computed according to (19).
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Fig. 3: Evolution of agent k beliefsμk,i(θ
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1) andμk,i(θ

◦
2) over

time for k = 6, 7, 8.
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