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ABSTRACT

We develop an effective distributed strategy for seeking the Pareto
solution of an aggregate cost consisting of regularized risks. The fo-
cus is on stochastic optimization problems where each risk function
is expressed as the expectation of some loss function and the proba-
bility distribution of the data is unknown. We assume each risk func-
tion is regularized and allow the regularizer to be non-smooth. Under
conditions that are weaker than assumed earlier in the literature and,
hence, applicable to a broader class of adaptation and learning prob-
lems, we show how the regularizers can be smoothed and how the
Pareto solution can be sought by appealing to a multi-agent diffu-
sion strategy. The formulation is general enough and includes, for
example, a multi-agent proximal strategy as a special case.

Index Terms— Distributed optimization, diffusion strategy,
smoothing, proximal operator, non-smooth regularizer, proximal
diffusion, regularized diffusion.

1. INTRODUCTION AND RELATED WORK

We consider a strongly-connected network consisting of N agents.
For any two agents k and �, we attach a pair of nonnegative coeffi-
cients {a�k, ak�} to the edge linking them. The scalar a�k is used
to scale data moving from agent � to k; likewise, for ak�. Strong-
connectivity means that it is always possible to find a path, in either
direction, with nonzero scaling weights linking any two agents. In
addition, at least one agent k in the network possesses a self-loop
with akk > 0. Let Nk denote the set of neighbors of agent k. The
coefficients {a�k} are convex combination weights that satisfy

a�k ≥ 0,
∑
�∈Nk

a�k = 1, a�k = 0 if � /∈ Nk (1)

If we introduce the combination matrix A = [a�k], it then fol-
lows from (1) and the strong-connectivity property that A is a left-
stochastic primitive matrix. In view of the Perron-Frobenius Theo-
rem [1–3], this ensures that A has a single eigenvalue at one while
all other eigenvalues are inside the unit circle. If we let p denote the
right-eigenvector of A that is associated with the eigenvalue at one,
and if we normalize the entries of p to add up to one, then it also
holds that all entries of p, denoted by {pk}, are strictly positive, i.e.,

Ap = p, 1
Tp = 1, pk > 0 (2)

We associate with each agent k a risk function Jk(w) : RM → R,
assumed differentiable. In most adaptation and learning problems,
risk functions are expressed as the expectation of loss functions.
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Hence, we assume that Jk(w) = EQk(w;x) for some loss function
Qk(·) and where x denotes random data. The expectation is com-
puted over the distribution of this data (note that, in our notation,
we use boldface letters for random quantities and normal letters for
deterministic quantities). We also associate with agent k a regular-
ization term, Rk(w) : RM → R, which is a known deterministic
function although possibly non-differentiable. Regularization fac-
tors of this form can, for example, help induce sparsity properties
(such as using �1 or elastic-net regularizers) [4–6].

The objective we are interested in is to devise a fully distributed
strategy to seek the minimizer of the following weighted aggregate
cost, denoted by wo:

wo � argmin
w

N∑
k=1

pk {Jk(w) +Rk(w)} (3)

The weights {pk} indicate that the resulting minimizer wo can be
interpreted as a Pareto solution for the collection of regularized risks
{Jk(w)+Rk(w)} [3,7]. We are particularly interested in determin-
ing this Pareto solution in the stochastic setting when the distribution
of the data x is generally unknown. This means that the risks Jk(w),
or their gradient vectors, are also unknown. As such, approximate
gradient vectors will need to be employed. A common construction
in stochastic approximation theory is to employ the following choice
at each iteration i:

̂∇wJk(w) = ∇wQk(w;xi) (4)

where xi represents the data that is available (observed) at time
i. The difference between the true gradient vector and its approx-
imation is called gradient noise. This noise will seep into the
operation of the distributed algorithm and one main challenge is
to show that, despite its presence, the proposed solution is able to
approach wo asymptotically. A second challenge we face in con-
structing an effective distributed solution is the non-smoothness
(non-differentiability) of the regularizers. Motivated by a technique
proposed in [8] in the context of single agent optimization, we
will address this difficulty in the multi-agent case by introducing a
smoothed version of the regularizers and showing that the solution
wo can still be recovered under this substitution as the size of the
smoothing parameter is reduced. We adopt a general formulation
that will be shown to include a distributed proximal solution as a
special case.

There are several useful works in the literature that study opti-
mization problems with non-smooth regularizers. For example, the
work [9] relies on the use of sub-gradient iterations but requires that
the sub-gradients of the regularized risks, Jk(w) + Rk(w), should
be uniformly bounded. Unfortunately, this condition is not satis-
fied in many important cases of interest, for example, even when
Jk(w) is simply quadratic in w or when the Rk(w) are indicator
functions used to encode constraints. Variations for specific choices
of Jk(·) are examined in [10–13] where only the subgradients of



Rk(·) are required to be bounded. For the case when the Rk(w) are
chosen as indicator functions in constrained problem formulations,
a distributed diffusion strategy based on the use of suitable penalty
functions is proposed in [14].

Some more recent studies pursue distributed solutions by relying
on the use of proximal iterations (as opposed to sub-gradient itera-
tions); an accessible survey on the proximal operator and its proper-
ties appears in [15]. For example, for purely deterministic costs, dis-
tributed proximal strategies are developed in [16, 17]. In the single-
agent case, the behavior of the forward-backward algorithm under
stochastic perturbations is investigated in [18]. Distributed varia-
tions for mean-square error costs with bounded regularizer subgra-
dients are proposed in [19, 20] for single-task problems and in [21]
for multi-task environments. A strategy for general stochastic costs
with small, Lipschitz continuous regularizers is studied in [22].

Most of these prior works involve requirements that limit their
application to particular scenarios, whether in terms of requiring
bounded sub-gradients, or focusing on quadratic costs, or requiring
small regularizers. The purpose of this work is to propose a general
distributed strategy and a line of analysis that is applicable to a wide
class of stochastic costs under non-differentiable regularizers. The
first step in the solution involves replacing each Rk(w) by a differ-
entiable approximation, Rδ

k(w), parametrized by δ > 0, such that

Rδ
k(w) ≤ Rk(w) and lim

δ→0
Rδ

k(w) = Rk(w). (5)

The accuracy of the approximation is controlled through δ. Subse-
quently, we approximate problem (3) by

wo
δ � argmin

w

N∑
k=1

pk
{
Jk(w) +Rδ

k(w)
}

(6)

In the next sections we explain how to construct the smooth approx-
imation, Rδ

k(w), by appealing to conjugate functions and will show
that the distance ‖wo−wo

δ‖ can be made arbitrarily small as δ → 0.
We then present an algorithm to solve for the minimizer of (6) in a
distributed manner. The analysis will rely on the following common
assumptions [3, 23, 24].

Assumption 1 (Lipschitz gradients). For each k, the gradient
∇wJk(·) is Lipschitz, namely, for any x, y ∈ RM :

‖∇wJk(x)−∇wJk(y)‖ ≤ λU‖x− y‖ (7)

Assumption 2 (Strong Convexity). The weighted aggregate of the
differentiable risks is strongly-convex, namely, for any x, y ∈ RM :

(x− y)T ·
N∑

k=1

pk (∇wJk(x)−∇wJk(y)) ≥ λL‖x− y‖2 (8)

Assumption 3 (Regularizers). For each k, Rk(·) is closed convex.

2. ALGORITHM FORMULATION

2.1. Construction of Smooth Approximation

Smoothing non-differentiable costs is a popular technique in the op-
timization literature [8, 25]. Nevertheless, this method has been
mainly applied to the solution of deterministic optimization prob-
lems by single stand-alone agents. In this work, we are pursuing an
extension in two non-trivial directions. First, we consider networked

agents (rather than a single agent) working together to solve the ag-
gregate optimization problem (3) or (6) and, second, the risk func-
tions involved are now stochastic costs defined as the expectations
of certain loss functions. In this case, the probability distribution
of the data is unknown and, therefore, the risks themselves are not
known but can only be approximated. The challenge is to devise
a distributed strategy that is able to converge to the desired Pareto
solution despite these difficulties.

To begin with, we explain how smoothing of the regularizers
is performed. Thus, recall that the conjugate function, denoted by
R�

k(w), of a regularizer Rk(w) is defined as

R�
k(w) � sup

u∈dom Rk

{
wTu−Rk(u)

}
. (9)

A useful property of conjugate functions is that R�
k(w) is always

closed convex regardless of whether Rk(w) is convex or not [26,27].

Definition 1 (Distance function). A distance function dist(·) for a
closed convex set C is a continuous, strongly-convex function with
C ⊆ dom dist(·). We normalize the function so that

min
w∈C

dist(w) = 0, dist(w) ≥ 1

2
‖w − wcent‖2 (10)

for some wcent, which means that the strong-convexity constant is
set to one.

Definition 2 (Smooth approximation). We choose a distance func-
tion over C = domR�

k(w) and define the smooth approximation of
Rk(·) as:

Rδ
k(w) � max

u∈dom R�
k

{
wTu−R�

k(u)− δ · dist(u)
}

=(R�
k + δ · dist)� (w) (11)

Thus, observe that the smooth approximation for Rk(w), which we
are denoting by Rδ

k(w), is obtained by first perturbing the conjugate
function R�

k(u) by δ · dist(u) and then conjugating the result again.
The perturbation makes the sum R�

k(u) + δ · dist(u) a strongly-
convex function. The motivation behind this construction is that the
conjugate of a strongly-convex function is differentiable everywhere
and, therefore, Rδ

k(w) is differentiable everywhere. This intuition is
formalized in the following statement [8].

Theorem 1 (Smooth approximation). Any Rδ
k(w) constructed ac-

cording to (11) satisfies (5) and is differentiable with gradient vector
given by

∇wR
δ
k(w) = argmax

u∈dom R�
k

{
wTu−R�

k(u)− δ · dist(u)
}
. (12)

Furthermore, the gradient is co-coercive, i.e., it satisfies for any x, y:

(x− y)T
(
∇wR

δ
k(x)−∇wR

δ
k(y)

)
≥ δ‖∇wR

δ
k(x)−∇wR

δ
k(y)‖2

(13)

From this result, we can establish that:

lim
δ→0

‖wo − wo
δ‖ = 0 (14)

Obviously, the feasibility of stochastic-gradient algorithms for the
minimization of (6) hinges on the assumption that (12) can be eval-
uated in closed form or at least easily. Fortunately, this is the case
for a large class of regularizers of interest – see [28] for the case
dist(·) = 1

2
‖ · ‖2 and [8] for other distance choices.



2.2. Regularized Diffusion Strategy

Now that we have established a method for constructing a differen-
tiable approximation for each regularizer, we can solve for the mini-
mizer of (6) by resorting to the following (adapt-then-combine form
of the) diffusion strategy [3, 23, 24]:

ψk,i = wk,i−1 − μ̂∇wJk(wk,i−1)− μ∇wR
δ
k(wk,i−1) (15)

wk,i =

N∑
�=1

a�kψ�,i (16)

where μ > 0 is a small step-size parameter. In this implementation,
each agent k first performs the stochastic-gradient update (15), start-
ing from its existing iterate value wk,i−1, and obtains an intermedi-
ate iterate ψk,i. Subsequently, agent k consults with its neighbors
and combines their intermediate iterates into wk,i according to (16).
Motivated by the construction in [14], we can refine (15)–(16) fur-
ther as follows. We introduce an auxiliary variable φk,i and perform
(15) in two successive steps by writing:

φk,i = wk,i−1 − μ̂∇wJk(wk,i−1) (17)

ψk,i = φk,i − μ∇wR
δ
k(wk,i−1) (18)

wk,i =

N∑
�=1

a�kψ�,i (19)

We can now appeal to an incremental-type argument [29,30] by not-
ing that it is reasonable to expect φk,i to be an improved estimate
for wo

δ compared to wk,i−1. Therefore, we replace wk,i−1 in (18)
by φk,i and arrive at the following regularized diffusion implemen-
tation.

Algorithm: (Regularized Diffusion Strategy)

φk,i = wk,i−1 − μ̂∇wJk(wk,i−1) (20)

ψk,i = φk,i − μ∇wR
δ
k(φk,i) (21)

wk,i =

N∑
�=1

a�kψ�,i (22)

Example 1 (Proximal diffusion learning). Choosing dist(w) =
1
2
‖w‖2 turns the smooth approximation (11) into

Rδ
k(w) =

(
R�

k(w) +
δ

2
‖w‖2

)�

(23)

which is the well-known Moreau envelope [15, 28, 31]. It can be
rewritten equivalently as

Rδ
k(w) � min

u

(
Rk(u) +

1

2δ
‖w − u‖2

)
(24)

where the minimizing argument is identified as the proximal opera-
tor:

proxδRk
(w) = argmin

u

(
Rk(u) +

1

2δ
‖w − u‖2

)
. (25)

For many costs Rk(w), the proximal operator can be evaluated in
closed form. The gradient of the Moreau envelope (23) can be veri-
fied to be given by

∇wR
δ
k(w) =

1

δ

(
w − proxδRk

(w)
)
. (26)

In this way, recursions (20)–(22) reduce to:

φk,i = wk,i−1 − μ̂∇wJk(wk,i−1) (27)

ψk,i =
(
1− μ

δ

)
φk,i +

μ

δ
proxδRk

(φk,i) (28)

wk,i =
N∑
�=1

a�kφ�,i (29)

which is a damped variation of the proximal diffusion algorithm pro-
posed in [22] under the stronger assumption of small Lipschitz con-
tinuous regularizers (setting μ = δ in (28) leads to the algorithm
in [22]).

3. CONVERGENCE ANALYSIS

3.1. Centralized Recursion

We now examine the convergence properties of the diffusion strategy
(20)–(22). To do so, it is useful to introduce the following centralized
recursion to serve as a frame of reference:

w̄i = w̄i−1 − μ

N∑
k=1

pk
{
∇wJk(w̄i−1) +∇wR

δ
k(w̄i−1)

}
(30)

This recursion amounts to a gradient-descent iteration applied to the
smoothed aggregate cost in (6) under the assumption that the risk
functions are known. For convenience of presentation, we introduce
the central operator Tc(x) : R

M → RM defined as follows:

Tc(x) � x− μ

N∑
k=1

pk
{
∇wJk(x) +∇wR

δ
k(x)

}
(31)

so that the reference recursion (30) becomes w̄i = Tc(w̄i−1). The
proof of the following result is omitted for brevity.

Lemma 1 (Contraction mapping). For sufficiently small μ, the map-
ping Tc(·) is a strict contraction and the recursion w̄i = Tc(w̄i−1)
converges exponentially to the minimizer, wo

δ , of problem (6).

3.2. Network Basis Transformation and Error Bounds

We are now ready to examine the behavior of the diffusion strategy
(20)–(22). We employ the following common assumption on the
perturbations caused by the gradient noise [3, 23, 24].

Assumption 4 (Gradient noise process). For each k, the gradient
noise process is defined as

sk,i(wk,i−1) = ̂∇wJk(wk,i−1)−∇wJk(wk,i−1) (32)

and satisfies

E [sk,i(wk,i−1)|F i−1] = 0 (33a)

E
[‖sk,i(wk,i−1)‖2|F i−1

] ≤ β2‖wk,i−1‖2 + σ2
(33b)

for some non-negative constants {β2, σ2}, and where F i−1 denotes
the filtration generated by the random processes {w�,j} for all � =
1, 2, . . . , N and j ≤ i− 1.



We begin by introducing the following extended vectors and matri-
ces, which collect quantities of interest from across all agents in the
network:

wi � col {w1,i, . . . ,wN,i} (34)

φi � col
{
φ1,i, . . . ,φN,i

}
(35)

A � A⊗ IM (36)

ĝ(wi) � col
{
̂∇wJ1(w1,i), . . . , ̂∇wJN (wN,i)

}
(37)

r̂(φi) � col
{
∇wR

δ
1(φ1,i), . . . ,∇wR

δ
N (φN,i)

}
(38)

where ⊗ denotes the Kronecker product [32, Ch. 13]. Using these
definitions, iterations (20)–(22) show that the network vector wi

evolves according to the following dynamics:

wi = ATwi−1 − μAT (
ĝ(wi−1) + r̂(φi−1)

)
(39)

By construction, the combination matrix A is left-stochastic and
primitive and hence admits a Jordan decomposition of the form A =
VεJV

−1
ε with [3, 24]:

Vε =
[
p VR

]
, J =

[
1 0
0 Jε

]
, V −1

ε =

[
1T

V T
L

]
(40)

where Jε is a block Jordan matrix with the eigenvalues λ2(A)
through λN (A) on the diagonal and ε on the first lower sub-
diagonal. The extended matrix A then satisfies A = VεJV−1

ε

with Vε = Vε ⊗ IM , J = J ⊗ IM , V−1
ε = V −1

ε ⊗ IM . Multiplying
both sides of (39) by VT

ε and introducing the transformed iterate
vector w′

i � VT
ε wi, we obtain

w′
i = J Tw′

i−1 − μJ TVT
ε

(
ĝ(wi−1) + r̂(φi−1)

)
(41)

Motivated by the arguments in [3, 33], we partition the transformed
network vector into w′

i = col {wc,i,we,i}, where wc,i ∈ RM×1

and we,i ∈ R(N−1)M×1. Then, recursion (41) can be decomposed
as

wc,i = wc,i−1 − μ
(
pT ⊗ IN

) (
ĝ(wi−1) + r̂(φi−1)

)
(42)

we,i = J T
ε we,i−1 − μJ T

ε VT
R

(
ĝ(wi−1) + r̂(φi−1)

)
(43)

It can be verified from w′
i = VT

ε wi, that wc,i =
∑N

k=1 pkwk,i.
That is, wc,i is the weighted centroid vector of all iterates wk,i

across the network. From wi =
(V−1

ε

)T
w′

i on the other hand,
it follows that wi = 1⊗wc,i + VLwe,i, so that VLwe,i can be in-
terpreted as the deviation of individual estimates from the weighted
centroid vector wc,i across the network.

Further inspection of recursion (42) for the centroid vector
wc,i and comparison to the central recursion (30) reveal that (42)
is a perturbed version of (30), where ∇wJk(w̄i−1) is replaced by

̂∇wJk(wk,i−1) and ∇wR
δ
k(w̄i−1) is replaced by ∇wR

δ
k(φk,i−1).

It is therefore reasonable to expect that wc,i will evolve close to the
central variable w̄i from (30), which was already shown to converge
to wo

δ in Lemma 1. This observation is formalized as follows. Let
w̃c,i = wo

δ − wc.i denote the error vector relative to the smoothed
Pareto solution wo

δ . The proof of the following result is omitted for
brevity.

Theorem 2 (Mean-square-error dynamics). Given δ, the variances
of w̃c,i and we,i are coupled and recursively bounded as[

E‖w̃c,i‖2
E‖we,i‖2

]

 Γ

[
E‖w̃c,i−1‖2
E‖we,i−1‖2

]
+O(μ2) (44)

where

Γ =

[
1−O(μ) O(μ)
O(μ2) ‖Jε‖+O(μ2)

]
(45)

and ‖Jε‖ < 1. It follows that, there exists small enough μ such that

lim sup
i→∞

[
E‖w̃c,i‖2
E‖we,i‖2

]



[
O(μ)
O(μ2)

]
(46)

From (14), it then follows that

lim
μ,δ→0

lim sup
i→∞

E‖wo −wk,i‖2 = 0. (47)

4. APPLICATION TO PATTERN CLASSIFICATION

Consider random binary class variables γk = ±1 and denote by
hk ∈ RM the corresponding feature vectors. During the training
phase, at each time instant i, agent k receives {γk(i),hk,i}. Using a
logistic regression formulation, we are interested in finding a global
decision rule, parametrized by wo, such that γ̂k(i) = hT

k,iw
o and

wo � arg min
w

N∑
k=1

pk
{
E ln

[
1 + e−γkh

T
k,iw

]
+ ρ1‖w‖1 + ρ2‖w‖22

}
(48)

where we are employing elastic-net regularization [4]. Let

Jk(w) = E ln
[
1 + e−γkh

T
k,iw

]
+ ρ2‖w‖22 (49)

and Rk(w) = ρ1‖w‖1. Then, problem (48) is of the form (3). The
Moreau envelope of ‖w‖1 is the Huber penalty. Its proximal oper-
ator is available in closed form and given by the soft-threshold or
shrinkage operator [31, 34]. Each agent in the network can hence
solve for wo by iterating (27)–(29).

The performance is illustrated in Fig. 1. The network consists
of 10 agents and hk ∈ R20 is constructed according to hk =
γk · col {1, 1, 0, . . . , 0} + vk, where vk ∈ R20 is drawn from
N (0, σ2

v,kI). Note that only the first two elements of each feature
vector contain information about γk(i) and hence wo is sparse, as is
often the case in large-scale machine learning problems. At each it-
eration, classification accuracy is evaluated on a seperate testing set.
We compare performance to the optimal linear classifier in terms
of error-propability, which, for this data model can be evaluated in
closed form from the statistical properties.
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Fig. 1. Noise profile, network structure and algorithm performance,
μ = 0.01, δ = 0.01, ρ2 = 0.001.
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