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ABSTRACT

This paper examines the convergence rate and mean-square-error

performance of momentum stochastic gradient methods in the con-

stant step-size and slow adaptation regime. The results establish that

momentum methods are equivalent to the standard stochastic gra-

dient method with a re-scaled (larger) step-size value. The equiva-

lence result is established for all time instants and not only in steady-

state. The analysis is carried out for general risk functions, and is not

limited to quadratic risks. One notable conclusion is that the well-

known benefits of momentum constructions for deterministic opti-

mization problems do not necessarily carry over to the stochastic

setting when gradient noise is present and continuous adaptation is

necessary. The analysis suggests a method to enhance performance

in the stochastic setting by tuning the momentum parameter over

time.

Index Terms— stochastic gradient descent, momentum accel-

eration, heavy-ball method, Nesterov method.

1. INTRODUCTION AND RELATED WORKS

Stochastic optimization focuses on the problem of optimizing the

expectation of a loss function, written as

min
w∈RM

J(w)
Δ
= Eθ[Q(w;θ)], (1)

where θ is a random variable whose distribution is generally un-

known and J(w) is a convex function (usually strongly-convex due

to regularization). Problems of this kind are common in many con-

texts, including in several adaptation and machine learning formula-

tions [1–4].

When J(w) is differentiable, one of the most popular tech-

niques to seek minimizers for (1) is to employ the stochastic gradient

method, which takes the form:

wi = wi−1 − μ∇w Q(wi−1;θi), i ≥ 0, (2)

where μ > 0 is a step-size parameter, θi is the observation of θ
at iteration i, and ∇wQ(·) denotes the gradient vector of the loss

function relative to w. Note that we use boldface letters to refer

to random quantities. In this paper we focus on constant step-size

implementations for two main reasons. First, they endow the re-

sulting recursions with continuous adaptation, learning, and track-

ing abilities and, second, they help attain exponential convergence

This work was supported in part by NSF grants CIF-1524250

and ECCS-1407712, DARPA project N66001–14–2–4029, and by a

Visiting Professorship from the Leverhulme Trust, United Kingdom.

Email:{kunyuan,ybc,sayed}@ucla.edu

rates in the order of O(αi) for some α ∈ (0, 1). This is in con-

trast to the slower rate of O(1/i) that is afforded by decaying step-

sizes [5–8]. Although constant step-size implementations can cause

small deterioration in the limiting accuracy of the iterates, this de-

terioration is tolerable in most large-scale learning and adaptation

problems [9, 10].

Now, seeking the minimizer(s) of problems of type (1) is chal-

lenging because the cost function, J(w), is generally unknown due

to the lack of information about the probability distribution of the

data. This stochastic optimization problem is in contrast to deter-
ministic problems where the cost function, J(w), is known and,

therefore, its gradient vector is also known and can be used in (2)

in place of the gradient vector of the loss function. The resulting

gradient-descent techniques are efficient and have lower computa-

tional demands than more sophisticated methods (say, of the New-

ton type). Nevertheless, they tend to exhibit slow convergence rates.

Several useful methods have been proposed in the literature to speed

up the convergence of gradient-descent recursions for determinis-

tic optimization problems. Among these methods, the heavy-ball

technique [6, 11] and Nesterov’s acceleration [12–14] are the most

successful variations. Both methods rely on the addition of a mo-

mentum term to the recursion and it is known that, when the risk

function J(w) is strongly convex and has Lipschitz continuous gra-

dients, these methods succeed in attaining the optimal exponential

convergence rate. There are also other advantages for risk functions

that are not necessarily strongly-convex.

Motivated by these useful acceleration properties in the deter-
ministic context, momentum terms have been subsequently intro-

duced into stochastic optimization algorithms as well [6,15–21] and

applied, for example, to problems involving the tracking of chirped

sinusoidal signals [22] or deep learning [23]. However, the analysis

in this paper will show that their advantages from deterministic op-

timization do not necessarily carry over to the stochastic setting due

to the presence of gradient noise (which is the difference between

the actual gradient vector and its approximation). Specifically, we

will show that any advantage they bring forth can be achieved by

staying with the original stochastic-gradient algorithm and adjusting

its step-size to a larger value. For instance, for optimization prob-

lem (1), we will show that if the step-sizes, μm for the momentum

(heavy-ball or Nesterov) methods and μ for the standard stochastic

gradient algorithms, are sufficiently small and satisfy the relation

μ =
μm

1− β
(3)

where β ∈ [0, 1) is the coefficient of the momentum term, then it

will hold that

E‖wm,i −wi‖2 = O(μ3/2), i = 0, 1, 2, . . . (4)



where wm,i and wi denote the iterates generated at time i by the mo-

mentum and standard implementations, respectively. In the special

case when J(w) is quadratic in w, as happens in mean-square-error

design problems, we can tighten (4) to

E‖wm,i −wi‖2 = O(μ2), i = 0, 1, 2, . . . (5)

What is important to note is that, we will show that these results hold

for every i, and not only asymptotically. Therefore, when μ is suf-

ficiently small, property (4) establishes that the stochastic gradient

method and the momentum versions are fundamentally equivalent

since their iterates evolve close to each other at all times. The anal-

ysis in later sections will further suggest a technique to recover the

faster performance of the momentum implementations by tuning the

momentum parameter over time.

1.1. Related Works in the Literature

There exist useful results in the literature that relate to special in-

stances of the general framework developed in this work, mainly for

the mean-square-error case when J(w) is quadratic in w. We do

not limit our analysis to this case and our results are applicable to

a broader class of problems beyond mean-square-error estimation

(e.g., logistic regression is covered). The treatment of the general

J(w) case is demanding because the Hessian matrix of J(w) is now

a matrix-function and is w−dependent, whereas it is a constant in

the quadratic case.

References [6, 15, 16] studied the heavy-ball stochastic gradi-

ent method for quadratic costs. They observed that although the

heavy-ball method increases the convergence rate, it nevertheless re-

sults in larger misadjustment in steady-state. References [17, 18]

studied heavy-ball LMS closely and claimed that no significant gain

is achieved in convergence speed if both the heavy-ball and stan-

dard LMS algorithms are tuned to have similar steady-state mean-

square-deviation (MSD) performance. Reference [19] observed that

when the step-sizes satisfy relation (3), then the heavy-ball LMS al-

gorithm is “equivalent” to standard LMS. However, the notion of

“equivalence” in this work is only referring to the fact that the al-

gorithms have similar starting convergence rates and similar steady-

state MSD. There was no analysis of the behavior of the algorithms

during all stages of learning – see also [20]. Another useful work

is [21], which considered the heavy-ball stochastic gradient method

for general risks, J(w). This work concluded that heavy-ball can

be equivalent to the standard stochastic gradient method asymptot-

ically (i.e., for i large enough). All of these works were limited

to the heavy-ball technique; they did not examine Nesterov’s tech-

nique, which is also applicable to stochastic gradient learning – see,

e.g., [23].

2. MOMENTUM ACCELERATION

The analysis in this work is carried out under the following assump-

tion on J(w), which is common in the context of adaptation and

learning and is often automatically satisfied due to the use of regu-

larization terms. The condition essentially amounts to assuming that

J(w) is strongly-convex with Lipschitz gradient.

Assumption 1 (Conditions on risk function). The cost function
J(w) is twice-differentiable and its Hessian matrix satisfies

0 < νIM ≤ ∇2J(w) ≤ δIM , (6)

for some positive parameters ν ≤ δ. �

We denote the minimizer for problem (1) by wo. Under Assumption

1, this minimizer is unique. We carry out the analysis by considering

the following general form of a stochastic-gradient implementation,

with two momentum parameters β1, β2 ∈ [0, 1):

ψi−1 = wi−1 + β1(wi−1 −wi−2), (7)

wi = ψi−1 − μm∇wQ(ψi−1;θi) + β2(ψi−1−ψi−2), (8)

with initial conditions

w−2 = ψ−2 = initial states, (9)

w−1 = w−2 − μm∇wQ(w−2;θ−1). (10)

We refer to this formulation as the momentum stochastic gradient

method. When β1 = 0 and β2 = β we recover the heavy-ball algo-

rithm [6, 11], and when β2 = 0 and β1 = β, we recover Nesterov’s

algorithm [13]. These two situations correspond to the condition:

β1 + β2 = β, β1β2 = 0, (11)

which we assume henceforth. We will further assume that β is not

too close to 1, i.e.

β ≤ 1− ε, for some constant ε > 0. (12)

The difference between the true gradient vector and its approxi-

mation is designated gradient noise and is denoted by:

si(ψi−1)
�
=∇wQ(ψi−1;θi)−∇wE[Q(ψi−1;θi)]. (13)

Let the symbol F i−1 represent the filtration generated by the ran-

dom process wj for j ≤ i− 1:

F i−1
�
= filtration{w−2,ψ−2, . . . ,wi−1,ψi−1}.

The following conditions on the gradient noise process essentially

amount to requiring the approximation for the true gradient to be

unbiased and for the variance of the gradient noise to decrease as

the quality of the iterate improves. Both requirements are reason-

able and they can be shown to be automatically satisfied in important

cases, such as mean-square-error or logistic regression designs.

Assumption 2 (Conditions on gradient noise). It is assumed that
the first and second-order conditional moments of the gradient noise
process satisfy the following conditions for any variable w ∈ F i−1:

E[si(w)|F i−1] = 0 (14)

E[‖si(w)‖2|F i−1] ≤ γ2‖wo −w‖2 + σ2
s (15)

almost surely, for some nonnegative γ2 and σ2
s . �

A useful step in the analysis that follows is to show first that

recursions (7)-(8) can be transformed into a first-order recursion

through a suitable change of variables. For this purpose, we first

introduce the transformation matrices:

V =

[
IM − β

1−β
IM

IM − 1
1−β

IM

]
, V −1 =

[
1

1−β
IM − β

1−β
IM

IM −IM

]
.

Let w̃i=wo−wi and define the transformed error vectors[
ŵi

w̌i

]
Δ
= V −1

[
w̃i

w̃i−1

]
=

[ 1
1−β

(w̃i − βw̃i−1)

w̃i − w̃i−1

]
(16)



as well as:

β′ Δ
= ββ1 + β − β1, (17)

Hi−1
Δ
=

∫ 1

0

∇2
wJ(w

o − tψ̃i−1)dt, (18)

Using the mean-value theorem [6, 8], it can then be verified that re-

cursions (7)–(8) can be transformed into the following extended re-

cursion:[
ŵi

w̌i

]
=

[
IM− μm

1−β
Hi−1 μmβ′

(1−β)2
Hi−1

−μmHi−1 βIM+μmβ′
1−β

Hi−1

][
ŵi−1
w̌i−1

]
+μm

[
si(ψi−1)

1−β

si(ψi−1)

]
(19)

The proof of the next result is omitted for brevity.

Theorem 1 (Mean-square stability). Let Assumptions 1 and 2 hold
and recall conditions (11) and (12). Then, for sufficiently small step-
sizes μm, the momentum recursion (7)-(8) will converge exponen-
tially to a small neighborhood of wo:

lim sup
i→∞

E‖wo −wi‖2 = O(μm). (20)

�

3. EQUIVALENCE IN THE QUADRATIC CASE

Theorem 1 establishes the convergence of the momentum recursions

(7)-(8). But some important questions remain. Does the momentum

implementation converge faster than the standard stochastic gradient

method (2)? Does the momentum implementation lead to superior

steady-state mean-square-deviation (MSD), measured in terms of the

limiting value of E ‖w̃i‖2? In this section we first examine the spe-

cial case when J(w) is quadratic to illustrate the main conclusions

that will follow. We consider risks of the form:

J(w) =
1

2
E

(
d(i)− uT

i w
)2

, (21)

where d(i) denotes a streaming sequence of zero-mean random vari-

ables with variance σ2
d = Ed2(i), and ui ∈ R

M denotes a streaming

sequence of independent zero-mean random vectors with covariance

matrix Ru = Euiu
T
i > 0. The cross covariance vector between

d(i) and ui is denoted by rdu = Ed(i)ui. The data {d(i),ui} are

assumed to be related via a linear regression model of the form:

d(i) = uT
i w

o + v(i), (22)

for some unknown wo, and where v(i) is a zero-mean white noise

process with power σ2
v = Ev2(i) and assumed independent of uj

for all i, j.

In order to distinguish the variables for LMS from the variables

for the momentum LMS version, which is described below in (26),

we replace the notation wi by xi. Then, the LMS recursion to solve

(21) is given by

xi = xi−1 + μui(d(i)− uT
i xi−1), (23)

and the corresponding gradient noise is [8, 10]:

si(x) = (Ru − uiu
T
i )(w

o − x)− uiv(i). (24)

Subtracting wo from both sides of (23), and setting x̃i = wo − xi,

we obtain the error recursion:

x̃i = (IM − μRu)x̃i−1 + μsi(xi−1). (25)

On the other hand, if we apply the momentum recursions (7)–(8)

to solve (21), we obtain from (16):[
ŵi

w̌i

]
=

[
IM− μm

1−β
Ru

μmβ′
(1−β)2

Ru

−μmRu βIM+μmβ′
1−β

Ru

][
ŵi−1
w̌i−1

]
+μm

[
si(ψi−1)

1−β

si(ψi−1)

]
(26)

Since we are assuming that the step-sizes {μ, μm} and the momen-

tum parameter β satisfy condition (3), then the first row of recursion

(26) becomes:

ŵi =(IM − μRu)ŵi−1 +
μβ′

1− β
Ruw̌i−1 + μsi(ψi−1). (27)

Comparing with the LMS recursion (25), we find that both relations

are quite similar, except that the momentum recursion has an ex-

tra driving term dependent on w̌i−1. However, recall from (16) that

w̌i−1 = w̃i−1−w̃i−2, which is the difference between two consec-

utive points generated by momentum LMS. Intuitively, it is not hard

to see that w̌i−1 is in the order of O(μ), which makes μRuw̌i−1

in the order of O(μ2). When the step-size μ is small, this O(μ2)
term can be ignored. Consequently, the above recursions for ŵi

and x̃i should evolve close to each other. This observation can be

established more formally as follows; again, we omit the proof for

brevity.

Theorem 2 (Equivalence for quadratic costs). Consider the stan-
dard and momentum stochastic gradient methods to solve problem
(21). Assume the algorithms start from the same initial states,
namely, ψ−2 = w−2 = x−1. Suppose conditions (11) and (12)
hold, and that the step-sizes {μ, μm} satisfy (3). Then, it holds for
sufficiently small μ that

E‖wi − xi‖2 = O(μ2), ∀i = 0, 1, 2, 3, . . . (28)

�

4. EQUIVALENCE IN THE GENERAL CASE

We now extend the analysis to more general risks. The analysis in

this case is more demanding because the Hessian matrix of J(w)
is now w−dependent. Nevertheless, under some smoothness condi-

tions, it is still possible to establish a strong equivalence result. The

first condition below replaces Assumption 2; actually, it can be veri-

fied that if Assumption 3 holds, then Assumption 2 will also hold.

Assumption 3 (Conditions on gradient noise). It is assumed that
the first and fourth-order conditional moments of the gradient noise
process satisfy the following conditions for any w ∈ F i−1:

E[si(w)|F i−1] = 0 (29)

E[‖si(w)‖4|F i−1] ≤ γ4
4‖wo −w‖4 + σ4

s,4 (30)

almost surely, for some nonnegative constants γ4
4 and σ4

s,4.
�

The next two assumptions introduce smoothness conditions on the

gradient noise process and the Hessian matrix of the risk function.



Assumption 4. Consider the iterate ψi−1 that is generated by the
momentum recursion (7). Let xi−1 denote the iterate that is gener-
ated by the gradient recursion (2) (we are writing xi instead of wi).
It is assumed that the gradient noise process satisfies:

E‖si(ψi−1)− si(xi−1)‖2 ≤ ξ1E‖ψi−1 − xi−1‖2, (31)

E‖si(ψi−1)− si(xi−1)‖4 ≤ ξ2E‖ψi−1 − xi−1‖4. (32)

for some nonnegative constants ξ1 and ξ2. �

Assumption 5. The Hessian of the risk function J(w) in (1) is
Lipschitz continuous, i.e.

‖∇2
wJ(w1)−∇2

wJ(w2)‖ ≤ κ‖w1 − w2‖. (33)

for some constant κ ≥ 0. �

The above three assumptions hold automatically for important cases,

such as least-mean-squares and logistic regression problems. The

following main result can now be established; the proof is omitted.

Theorem 3 (Equivalence for general risks). Consider the stan-
dard and momentum stochastic gradient recursions (2) and (7)–(8)

and assume they start from the same initial states, namely, ψ−2 =
w−2 = x−1. Suppose conditions (11), (12), and (3) hold. Under
Assumptions 1, 3, 4, and 5, and for sufficiently small step-sizes, it
holds that

E‖wi − xi‖2 = O(μ3/2), ∀i = 0, 1, 2, 3, . . . (34)

Furthermore, in the limit,

lim sup
i→∞

E‖wi − xi‖2 = O(μ2). (35)

�

We remarked earlier in Subsection 1.1 that with the same step-

size μ, the momentum method converges faster than the traditional

stochastic-gradient method but attains worse mean-square-deviation

(MSD) performance in steady-state. This behavior is consistent with

the result of Theorem 3, which allows us to interpret the momen-

tum implementation as corresponding to a stochastic-gradient im-

plementation with the larger step-size μ/(1 − β). There is also a

second more intuitive explanation as to why the momentum vari-

ant leads to worse steady-state performance. While the momentum

terms wi−wi−1 and ψi−ψi−1 in (7)–(8) help smooth the conver-

gence trajectories, and hence accelerate the convergence rate, they

nevertheless introduce additional noise into the evolution of the algo-

rithm because all iterates wi and ψi are distorted by perturbations.

One should notice that Theorem 3 is affirming that when a suf-

ficiently small step-size μ is employed, the iterates of the standard

and momentum stochastic gradient methods will evolve close to each

other. In this sense, both algorithms are regarded as equivalent.

However, when μ is relatively large, the gap between both algo-

rithms need not be negligible. In fact, previous literature [18, 19]

observed that momentum LMS with relatively large step-size, com-

pared to standard LMS, can have a smoothing effect when the Hes-

sian of the cost function has a bad condition number or the measure-

ment noise includes abrupt impulses.

5. EXPERIMENTAL RESULTS

To avoid deteriorating the MSD performance while retaining the ac-

celeration advantages of momentum, the results so far suggest em-

ploying a decaying momentum factor. In this section we illustrate

this and other conclusions by considering a regularized logistic re-

gression problem. In this example, we are interested in minimizing

J(w)
Δ
=

ρ

2
‖w‖2 + E

{
ln

[
1 + exp(−γ(i)hT

i w)
]}

(36)

where the approximate gradient is given in Equation (2.11) in [8].

In the simulation, we generate 20000 samples (hi,γ(i)).
Among these training points, 10000 feature vectors hi correspond

to label γ(i) = 1 and each hi ∼ N (1.5 × 110, Rh) for some

diagonal covariance Rh. The remaining 10000 feature vectors hi

correspond to label γ(i) = −1 and each hi ∼ N (−1.5×110, Rh).
Besides, we set ρ = 0.01. The optimal solution wo is computed

via the traditional gradient descent method. All simulation results

shown below are averaged over 100 trials.

We first compare the standard and momentum stochastic meth-

ods using μ = μm = 0.01. The momentum parameter β is set

to 0.5. These two methods are illustrated in Fig. 1 with blue and

red curves, respectively. It is seen that the momentum method con-

verges faster, but the MSD performance is much worse. Next, we

set μm = μ(1 − β) = 0.005 and illustrate this case with the ma-

genta curve. It is observed that the magenta and blue curves are

indistinguishable, which confirms the equivalence predicted by The-

orem 3. Finally we illustrate an implementation with a decaying

momentum parameter β(i) by the green curve. In this simulation,

we set μm = 0.01 and make β(i) decrease in a stair-wise manner:

when i ∈ [1, 500], β(i) = 0.5; when i ∈ [501, 1000], β(i) =
0.5/(5010.3); when i ∈ [1001, 1500], β(i) = 0.5/(10010.3); . . .;
when i ∈ [9501, 10000], β(i) = 0.5/(95010.3). With this decaying

β(i), it is seen that the momentum method recovers its faster con-

vergence rate and attains the same steady-state MSD performance as

the stochastic-gradient implementation.
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Fig. 1. Convergence behavior of standard and momentum stochastic

gradient methods.

6. CONCLUDING REMARKS
The results in this work establish that momentum methods are equiv-

alent to the standard stochastic gradient method at all time instants,

namely, their trajectories evolve close to each other for sufficiently

small step-sizes. This conclusion holds for general risk functions,

and is not limited to quadratic risks. The analysis further suggests a

method to enhance performance in the stochastic setting by tuning

the momentum parameter over time.
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