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ABSTRACT

This work examines the performance of stochastic sub-gradient

learning strategies, for both cases of stand-alone and networked

agents, under weaker conditions than usually considered in the

literature. It is shown that these conditions are automatically satis-

fied by several important cases of interest, including support-vector

machines and sparsity-inducing learning solutions. The analysis

establishes that sub-gradient strategies can attain exponential con-

vergence rates, as opposed to sub-linear rates, and that they can

approach the optimal solution within O(μ), for sufficiently small

step-sizes, μ. A realizable exponential-weighting procedure is pro-

posed to smooth the intermediate iterates and to guarantee these

desirable performance properties.

Index Terms— sotochastic sub-gradient method, affine-Lipschitz,

exponential rate, diffusion strategy, SVM, LASSO, gradient noise.

1. INTRODUCTION AND RELATED WORK

The minimization of non-differentiable convex cost functions is a

critical step in the solution of many important design problems [1–

3], including the design of sparse-aware (LASSO) solutions [4, 5],

support-vector machine (SVM) learners [6–10], or total-variation

based image denoising solutions [11, 12]. The sub-gradient tech-

nique is a popular choice for minimizing such non-differentiable

costs; it is closely related to the traditional gradient-descent method

where the actual gradient vector is replaced by a sub-gradient at

points of non-differentiability. It is one of the simplest methods in

current practice but is known to suffer from slow convergence. In

particular, it is shown in [3] that, for convex cost functions, the op-

timal convergence rate that can be delivered by sub-gradient meth-

ods in deterministic optimization problems cannot be faster than the

O(1/
√
i), where i is the iteration index.

However, the results in subsequent sections will show that when

used in the context of stochastic optimization, sub-gradient descent

algorithms turn out to have superior performance than suggested by

traditional analyses in the deterministic context. In particular, un-

der constant step-size adaptation, these algorithms will be shown to

converge at the faster exponential rate of O(αi) for some α ∈ (0, 1)
when the cost function is strongly-convex. This rate is much faster

than the O(1/i) rate that would be observed under a diminishing

step-size implementation for strongly-convex costs. We will clarify
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these favorable properties for both cases of stand-alone agents and

networked agents [13–16].
There are at least two main reasons that motivate a closer ex-

amination of the limits of performance of sub-gradient learning al-

gorithms. First, the explosive interest in large-scale and big data

scenarios favors the use of simple and computer-efficient algorith-

mic structures, of which the sub-gradient technique is a formidable

example. Second, it is becoming increasingly evident that more

sophisticated optimization iterations do not necessarily ensure im-

proved performance when dealing with complex models and data

structures [2, 17–19]. Motivated by these consideration, in our anal-

ysis of stochastic sub-gradient descent algorithms, we diverge in a

noticeable way from conditions that are commonly used in the litera-

ture. First, we introduce weaker assumptions than usually adopted in

prior works and, more importantly, we show that our assumptions are

automatically satisfied for important cases of interest (such as SVM,

LASSO, Total Variation). In contrast, these same problem formula-

tions do not satisfy the traditional assumptions used in the literature

and, hence, conclusions derived based on these earlier studies are

not directly applicable to SVM or LASSO problems. For example,

it is common in the literature to assume that the cost function has a

bounded gradient [2, 16, 20–22]; this condition is unreasonable and

is not satisfied even by quadratic costs whose gradient vectors are

affine in their parameter. The condition is also in direct conflict with

strongly-convex costs. By relaxing the conditions, the conclusions

in our work become stronger and applicable to a broader class of

algorithms and scenarios.
A second aspect of our study is that we focus on the use of con-

stant step-sizes in order to enable continuous adaptation and learn-

ing. Since the step-size is assumed to remain constant, the effect of

gradient noise is always present and does not die out, as would oc-

cur if we were using instead a diminishing step-size, say, of the form

μ(i) = τ/i [7, 16, 21, 23]. The challenge in analyzing the perfor-

mance under constant-rate adaptation is to show that the algorithm

is able to counter the effect of gradient noise and ensure convergence

of the iterates at exponential rate to within O(μ) of the desired opti-

mal solution.

A third aspect of our contribution is that it is known that sub-

gradient methods are not descent methods. For this reason, it is cus-

tomary to employ pocket variables (i.e., the best iterate) [1,3,24,25]

or arithmetic averages [7] to smooth out the output. However, the

pocket method is not practical in the stochastic setting, and the use

of arithmetic averages slows down convergence. Our analysis will

suggest an alternative weighted averaging scheme that does not de-

grade convergence while providing the desired smoothing effect in

an efficient manner.



2. PROBLEM FORMULATION: SINGLE AGENT CASE

We consider the problem of minimizing a risk function, J(w) :
R

M → R, which is assumed to be expressed as the expected value

of some loss function, Q(w;x), namely,

w� Δ
= argmin

w
J(w)

Δ
= argmin

w
E x Q(w;x) (1)

where w� denotes the minimizer. We first denote the sub-gradient

of J(w) at any arbitrary point w0 by g(w0), and defined it as any

vector g ∈ R
M that satisfies:

J(w) ≥ J(w0) + gT(w0)(w − w0), ∀w (2)

In the context of adaptation and learning, we do not know the ex-

act form of J(w) because the distribution of the data is not known

to enable computation of E xQ(w;x). As such, true sub-gradient

vectors for J(w) cannot be determined and they will need to be re-

placed by stochastic approximations evaluated from streaming data.

We employ the following stochastic iteration [1, 3, 24, 25]:

wi = wi−1 − μ ĝ(wi−1) (3)

where the successive iterates, {wi}, are now random variables (de-

noted in boldface) and ĝ(·) represents an approximate sub-gradient

vector at location wi−1 estimated from data available at time i. The

difference between an actual sub-gradient vector and its approxima-

tion is referred to as gradient noise and is denoted by

si(wi−1)
Δ
= ĝ(wi−1)− g(wi−1) (4)

2.1. Modeling Conditions

In order to examine the performance of the stochastic sub-gradient

implementation (3) for single-agent adaptation and learning, and

later for multi-agent networks, it is necessary to introduce some as-

sumptions. The first condition essentially requires that the construc-

tion of the approximate sub-gradient vector should not introduce bias

and that its error variance should decrease as the quality of the iter-

ate approaches the optimal solution. Both of these conditions are

sensible and can be shown to be satisfied by, for example, SVM and

LASSO constructions.

Assumption 1 (CONDITIONS ON GRADIENT NOISE) The first and
second-order conditional moments of the gradient noise process sat-
isfy the following conditions:

E [ si(wi−1) |F i−1 ] = 0 (5)

E [ ‖si(wi−1)‖2 |F i−1 ] ≤ β2‖w� −wi−1‖2 + σ2
(6)

for some constants β2 ≥ 0 and σ2 ≥ 0, and where F i−1 denotes
the filtration corresponding to all past iterates (essentially, the con-
ditioning in (5)–(6) is relative to the previous iterates). �

The second condition ensures that w� is unique so that the optimiza-

tion problem is well-defined, and the third condition is more relaxed

than what is traditionally imposed in the literature.

Assumption 2 (STRONGLY-CONVEX RISK FUNCTION) The risk
function is assumed to be η−strongly-convex, i.e.,

J(θw1 + (1− θ)w2) ≤ θJ(w1) + (1− θ)J(w2)

− η

2
θ(1− θ)‖w1 − w2‖2

(7)

for any θ ∈ [0, 1], w1, and w2, and where η > 0 �

Assumption 3 (SUB-GRADIENT IS AFFINE-LIPSCHITZ) It is as-
sumed that the sub-gradient of the risk function, J(w), is affine
Lipschitz, i.e. there exist constants c ≥ 0 and d ≥ 0 such that

‖g(w1)− g(w2)‖ ≤ c‖w1 − w2‖+ d, ∀w1, w2 (8)

and for any choice g(·) ∈ ∂J(·), where ∂J(w) represent sub-
differentials, i.e., the set of all valid sub-gradients at w. �

Assumption 2 is rare in works on sub-gradient optimization because

it is customary for these works to focus on studying piece-wise linear

risks; these are important examples of non-smooth functions but they

do not satisfy the strong-convexity condition. In our case, strong-

convexity is not a restriction because in the context of adaptation

and learning, it is common for the risk functions to include a regu-

larization term, which helps ensure strong-convexity.

More critically, though, it is customary in the literature to use in

place of Assumption 3 a more restrictive condition that requires the

risk function itself (rather than its sub-gradient) to be Lipschitz.This

condition is equivalent to requiring the sub-gradient to be bounded

[1, 16, 20, 22], i.e.,

‖g(w)‖ ≤ d1, ∀w, g ∈ ∂J(w) (9)

Such a requirement does not even hold for quadratic risk functions,

J(w), whose gradient vectors are affine in w and, therefore, can-

not be bounded. Even more, it can be easily seen that requirement

(9) is conflicted with the strong-convexity assumption. One way to

circumvent this problem is to restrict the domain of J(w) to some

bounded convex set, say, w ∈ W , and then employ a projection-

based sub-gradient method. However, this approach has at least three

drawbacks. First, the unconstrained problem is transformed into a

more demanding constrained problem involving an extra projection

step. Second, the projection step may not be straightforward to carry

out unless the set W is simple enough. Third, the bound that results

on the sub-gradient vectors by limiting w to W can be very loose.

For these reasons, we do not rely on the restrictive condition

(9) and introduce instead the more relaxed affine-Lipschitz condition

(8). This condition is weaker than (9). Indeed, it can be verified that

(9) implies (8) but not the other way around. The following example

shows that the important problem of SVM learning satisfies con-

dition assumption 3; a similar conclusion applies to 	1-regularized

least-square (LASSO) but is omitted for brevity.

2.2. Example: Single-Agent SVM Learning

The two-class SVM formulation deals with the problem of determin-

ing a separating hyperplane, w ∈ R
M , in order to classify feature

vectors, denoted by h ∈ R
M , into one of two classes: γ = +1 or

γ = −1. The regularized SVM risk function is strongly-convex and

of the form:

Jsvm(w)
Δ
=

ρ

2
‖w‖2 + E

(
max

{
0, 1− γhTw

})
(10)

where ρ > 0 is a regularization parameter. We are generally given

a collection of independent training data, {γ(i),hi}, consisting of

feature vectors and their class designations and assumed to arise

from joint wide-sense stationary processes. One choice to approxi-

mate the sub-gradient vector of Jsvm(w) is to employ the following

instantaneous approximation:

ĝsvm(wi−1) = ρwi−1 + γ(i)hi I[γ(i)h
T
i wi−1 ≤ 1] (11)



In this expression, the indicator function I[a] is 1 if the statement a
is true; otherwise it equals 0. Then, the gradient noise process in the

SVM formulation is given by

si(wi−1) = γ(i)hi I[γ(i)h
T
i wi−1 ≤ 1]−Eγh I[γhTwi−1 ≤ 1]

(12)

It is easy to verify that Assumption 1 is satisfied with β2 = 0 and

σ2 = Tr(Rh), where Rh = EhhT. Likewise Assumption 3 is

satisfied with parameters c = ρ and d = 2[Tr(Rh)]
1/2.

2.3. Performance Analysis

In preparation for the analysis, we first conclude from (8) that:

‖g(w1)−g(w2)‖2 ≤ e2‖w1−w2‖2+f2 ∀w1, w2, g ∈ ∂J (13)

where

e2
Δ
= c2 +

2cd

R
≥ 0, f2 Δ

= d2 + 2cdR ≥ 0 (14)

and the constant R is any positive number that we are free to choose.

At every iteration i, the risk value that corresponds to the iterate

wi is J(wi). This value is obviously a random variable due to the

randomness in the data used to run the algorithm. We denote the

mean risk value by EJ(wi). The next theorem shows how fast and

how close this mean value approaches the optimal value, J(w�). To

do so, the statement in the theorem relies on the best pocket iterate,

denoted by wbest
i , and which is defined as:

wbest
i

Δ
= argmin

0≤j≤i
E J(wj) (15)

Theorem 1 (SINGLE AGENT PERFORMANCE) Consider using the
stochastic sub-gradient algorithm (3) to seek the unique minimizer,
w�, of problem (1), where the risk function satisfies Assumptions 1–
3. If the step-size parameter is sufficiently small, then it holds that

lim
i→∞

EJ(wbest
i )− J(w�) ≤ μ(f2 + σ2)/2 (16)

Moreover, the convergence of E J(wbest
i ) towards J(w�) occurs at

an exponential rate, O(αi), where

α
Δ
= 1− μη + μ2(e2 + β2) = 1−O(μ) (17)

Proof: Omitted due to space limitations — see [26] �
The above theorem only clarifies the performance of the best

pocket value, which is not readily available during the algorithm im-

plementation since the risk function itself cannot be evaluated due

to the lack of knowledge about the probability distribution of the

data. However, a more practical conclusion can be deduced from the

statement of the theorem as follows. Suppose we choose a param-

eter κ that satisfies α ≤ κ < 1. Next, we introduce the convex-

combination coefficients:

rL(j)
Δ
=

κL−j

SL
, j = 0, 1, . . . , L, where SL

Δ
=

L∑
j=0

κL−j

(18)

Using these coefficients, we define the weighted iterate

w̄L
Δ
=

L∑
j=0

rL(j)wj (19)

Observe that, in contrast to wbest
L , the above weighted iterate is com-

putable since its value depends on the successive iterates {wj} and

these are available during the operation of the algorithm. Observe

further that w̄L satisfies the recursive construction:

w̄L =

(
1− 1

SL

)
w̄L−1 +

1

SL
wL (20)

Now, since J(·) is a convex function, it holds that

J(w̄L) = J

(
L∑

j=0

rL(j)wj

)
≤

L∑
j=0

rL(j)J(wj) (21)

Using this fact, we can derive a result similar to (16) albeit applied

to w̄L. Specifically, under the same conditions as in Theorem 1, it

holds that

lim
L→∞

EJ(w̄L)− J(w�) ≤ μ(f2 + σ2)/2 (22)

and the convergence of EJ(w̄L) towards J(w�) continues to occur

at an exponential rate, O(κL).

2.4. Simulation: Single-Agent SVM Learning

We compare the performance of the stochastic sub-gradient SVM

implementation against LIBSVM (a popular SVM solver that uses

quadratic programming on dual problem) [27]. The test data is ob-

tained from the LIBSVM website1 and also from the UCI dataset2.

We first use the Adult dataset after preprocessing [28] with 11,220

training data and 21,341 testing data in 123 feature dimensions. To

ensure a fair comparison, we use linear LIBSVM with the exact same

parameters as the sub-gradient method. Hence, we choose C =
5 × 102 for LIBSVM, which corresponds to ρ = 1

C
= 2 × 10−3.

We also set μ = 0.05. We can see from Fig. 1 that the stochastic sub-

gradient algorithm is able converge to the performance of LIBSVM

quickly. Since we only use each data point once, and since each it-

eration is computationally simpler, the sub-gradient implementation

ends up being computationally more efficient. Similar performance

results can be obtained for LASSO (	1-regularized least-squares)

problems and for total-variation based image denoising problems.

We omit these two examples due to space limitations — see [26].

3. PROBLEM FORMULATION: MULTI-AGENT CASE

We now extend the previous results to multi-agent networks where a

collection of agents cooperate with each other to seek the minimizer

of an aggregate cost of the form:

min
w

N∑
k=1

Jk(w), where Jk(w)
Δ
= E xkQk(w;xk) (23)

where k refers to the agent index. Extension of the earlier results to

the multi-agent case requires some nontrivial effort due to the cou-

pling that exists among neighboring agents. Nevertheless, the same

broad conclusion will continue to hold with proper adjustments. We

continue to assume that the individual costs satisfy Assumptions 2

and 3, i.e., each Jk(w) is strongly-convex and its sub-gradient vec-

tors are affine-Lipschitz with parameters {ηk, ck, dk}. We further

1http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets
2http://archive.ics.uci.edu/ml/
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Fig. 1. SVM solvers applied to the Adult data set. Comparison of

the performance accuracy, percentage of correct prediction over test

dataset, for LIBSVM [27] and a stochastic sub-gradient implemen-

tation.

assume that the individual risks share a common minimizer, w�,

which will therefore agree with the global minimizer for (23). This

scenario corresponds to the important situation in which agents have

a common objective (or task), namely, that of estimating the same

parameter vector, w�, in a distributed manner through localized in-

teractions and cooperation.

Thus, consider a network consisting of N separate agents con-

nected by a topology. As described in [13, 29], we assign a pair

of nonnegative weights, {ak�, a�k}, to the edge connecting any two

agents k and 	. The scalar a�k is used by agent k to scale the data

it receives from agent 	 and similarly for ak�. There are several

strategies that the agents can employ to seek the minimizer, w�, in-

cluding consensus and diffusion strategies [13–16, 29–31]. In this

work, we focus on the latter class since diffusion implementations

have been shown to have superior stability and performance proper-

ties when used in the context of adaptation and learning from stream-

ing data. [13, 29, 32]. We therefore consider the following diffusion

strategy in its adapt-then-combine (ATC) form:

ψk,i = wk,i−1 − μ ĝk(wk,i−1) (24)

wk,i =
∑
�∈Nk

a�kψ�,i (25)

The entries A = [a�k] define a left-stochastic matrix. Since the net-

work is strongly-connected, the combination matrix A will be prim-

itive [13,33]. The eigenvectors of A corresponding to the eigenvalue

at one are denoted by Ap = p and AT1 = 1. It follows from the

Perron-Frobenius theorem [33] that the entries of p are all strictly

positive and we normalize them to add up to one. We denote the

individual entries of p by {pk}.

The next result extends Theorem 1 to the network case. The

result establishes that the distributed strategy is stable and converges

exponentially fast for sufficiently small step-sizes. For each agent,

we again introduce a best pocket iterate, denoted by wbest
k,i :

wbest
k,i

Δ
= argmin

0≤j≤i
E Jk(wk,j) (26)

Theorem 2 (NETWORK PERFORMANCE) Consider using the stochas-
tic sub-gradient diffusion algorithm (24)–(25) to seek the unique
minimizer, w�, of problem (23), where the risk functions, Jk(w),
satisfy Assumptions 1–3 with parameters {ηk, β2

k, σ
2
k, e

2
k, f

2
k}.

Assume the step-size parameter is sufficiently small. It holds that

lim
i→∞

E

(
N∑

k=1

pkJk(w
best
k,i )−

N∑
k=1

pkJk(w
�)

)
≤

μ

2

N∑
k=1

(
pkf

2
k + p2kσ

2
k + 2pkfkh

)
= O(μ) (27)

for some finite constant h. Moreover, the convergence occurs at an
exponential rate, O(αi

q), where

αq
Δ
= max

k

{
1− μηk + μ2e2k + μ2β2

kpk + μ2h
e2k
fk

}
= 1−O(μ) (28)

Proof: Omitted for brevity — see [26]. �
A conclusion similar to (22) also holds in the multi-agent case

[26]. Examining the bound in (27), and comparing it with result

(22) for the single-agent case, we observe that the topology of the

network is now reflected in the bound through the Perron entries,

pk. Moreover, the bound in (27) involves three terms (rather than

only two as in the single-agent case): (1) pkf
2
k , which arises from

the non-smoothness of the risk function; (2) p2kσ
2
k, which is due to

gradient noise and the approximation of the true sub-gradient vector;

(3) 2hpkfk, which is an extra term in comparison to the single agent

case. This term reflects the small average variations in performance

that arise across agents over network.

3.1. Simulation: Multi-Agent SVM Learning

We examine the Adult dataset again. We distribute 32561 training

data over a network consisting of 20 agents. We set ρ = 0.002,

equivalent to C = 500 in LIBSVM, and μ = 0.15 for all agents

and we choose κ = 1 − 0.9μρ. Figure 2 shows that cooperation

among the agents outperforms the non-cooperative solution. More-

over, the distributed network can almost match the performance of

the centralized LIBSVM solution.
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