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ABSTRACT 

In this work, a diffusion-type algorithm is proposed to solve 
multi task estimation problems where each cluster of nodes 
is interested in estimating its own optimum parameter vec­
tor in a distributed manner. The approach relies on minimiz­
ing a global mean-square error criterion regularized by a term 
that promotes piecewise constant transitions in the parame­
ter vector entries estimated by neighboring clusters. We pro­
vide some results on the mean and mean-square-error conver­
gence. Simulations are conducted to illustrate the effective­
ness of the strategy. 

Index Terms- Distributed optimization, diffusion adap­
tation, multi task learning, cooperation, sparse regularization. 

1. INTRODUCTION 

Consider a distributed adaptive estimation problem where a 
connected network of N nodes is employed to simultaneously 
estimate a number of parameter vectors from noisy measure­
ments using in-network processing. Depending on the num­
ber of parameter vectors, we distinguish between two types of 
networks. In a single-task network, all agents are interested 
in estimating the same parameter vector. In a multitask net­
work, nodes are organized into clusters and agents within the 
same cluster are interested in estimating a common parame­
ter vector (also called task). Different clusters will generally 
have different (though related) tasks. Diffusion strategies for 
single-task networks have been proposed and analyzed in the 
literature rather extensively (see, e.g., [1-4] and the references 
therein). These strategies are attractive since they are scal­
able, robust, and enable continuous learning and adaptation 
in response to concept drifts. 

In comparison, diffusion multi-task strategies have been 
approached in two main ways. In a first scenario, no prior 
information on possible relationships between the tasks is as­
sumed. In this case, it was argued in [5] that the diffusion 
iterates will converge to a Pareto optimal solution when con­
fronted with multi-objective optimization problems consist-
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ing of a sum of individual costs with possibly different min­
imizers. In [6,7], strategies are developed for selecting the 
combination weights adaptively in order to enable automatic 
network clustering and subsequent cooperation over the clus­
tered agents. In a second scenario, diffusion strategies are 
derived by exploiting prior information about relationships 
among the tasks. A couple of works have addressed varia­
tions of this scenario. For example, in [8,9], it is assumed 
that nodes are interested in estimating some parameters of 
global and others of local interest. In [10], a global regular­
ized optimization problem is formulated where £2-norm co­
regularizers are added to the mean-square error criterion in 
order to promote smoothness of the graph signal (which refers 
to an N x 1 block vector whose k-th block is the optimum pa­
rameter vector at node k). 

In some applications, such as in cognitive radio [8,9] and 
remote sensing [10], it may happen that the optimum param­
eter vectors of neighboring clusters may have a large number 
of similar or identical entries, and a small number of different 
entries. It is therefore advantageous to develop a distributed 
strategy that involves cooperation among adjacent clusters in 
order to promote similarity between their tasks. This objec­
tive is the theme of this work. 

Notation. We use normal font letters to denote scalars, 
boldface lowercase letters to denote column vectors, and 
boldface uppercase letters for matrices. The operator (.) T 
denotes matrix transposition, the operator ® refers to the 
Kronecker product and col {-} stacks the column vectors en­
tries on top of each other. The set Nk denotes the neighbors 
of node k, C(k) denotes the cluster to which node k belongs, 
and Ci is the i-th cluster. 

2. MULTITASK DIFFUSION ADAPTATION 

2.1. Network model and problem formulation 

We consider a connected network consisting of N nodes 
grouped into Q clusters. At each time instant i, node k 
observes a zero-mean scalar measurement dk( i) and a zero­
mean LxI regression vector xk(i) with positive covariance 
matrix Rx,k. The data are assumed to be related by the linear 
model: 

(1) 
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where wk is the Lx 1 unknown parameter vector (also called 
task) sought by node k, and Zk (i) is a zero-mean measure­
ment noise of variance a; k. The noise process is assumed 
to be temporally white and spatially independent. Nodes in 
the same cluster are interested in the same estimation task, 
namely, wk = we whenever node k belongs to cluster Cq. 

q 
A link between two nodes belonging to two different clusters 
means that their tasks have a large number of similar compo­
nents and only a relatively small number of different com­
ponents. To promote such relationships between optimum 
parameter vectors, appropriate sparsity-based co-regularizers 
can be used. Several works exist in the literature for solving 
sparse single-task estimation problems using diffusion strate­
gies [11-13]. We shall use the notation !(WC(k) - WC(£») to 
refer to the real-valued convex function used to promote the 
sparsity of WC(k) - WC(£). Combining local mean-square er­
ror functions and the regularization functions, the multi task 
estimation problem is formulated as the problem of seeking a 
fully distributed solution for solving the following regularized 
problem (P): 

. Jg1ob( ) min wc, , ... , WCQ 
weI" "WCQ 

N 

= 2)E{ldk(i) - xr (i)WC(k)12} + 
k=1 

N 

T) L L Pkd(wC(k) - WC(£»), 
k=1 £ENk \C(k) 

(2) 

where T) > 0 is the regularization strength used to enforce 
sparsity, and Pk£ � 0 are weights for locally adjusting the 
regularization strength. The notation Nk \ C (k) denotes the set 
of neighboring nodes of k that are not in the same cluster as k. 
Let us now describe the regularization functions considered in 
this work. Since the Co-norm is non-convex, two alternative 
convex regularization functions are considered. First, we use 
the CI-norm, namely, h (WC(k) -WC(£») = Ilwc(k) -Wc(£) III 
whose subgradient vector with respect to wC(k) given wC(£) 

is taken as: 

8WC(k)h = sign(wC(k) - WC(£»), (3) 
where the entries of the vector sign( w) are obtained by ap­
plying the following function to each entry of w: 

. 
([ l) 

{ [Wlm/l[Wlml, if [wlm i= 0 
sIgn W m = 

0, otherwise. 
(4) 

The CI-regularizer is known to uniformly shrink all the com­
ponents of a vector and does not distinguish between zero and 
non-zero elements [14, 15]. To address this imbalance, we 
also consider a weighted formulation of the Cl-norm regular­
ization designed to enhance the penalization of the non-zero 
components of a vector [15]: 

L 
h(WC(k) - WC(£») = L aml[wC(k) - WC(dml (5) 

m=l 

where the am are positive weights to be dynamically ad­
justed. To reduce the bias induced by the C I-norm and better 
approximate the Co-norm, the weights am are usually chosen 
as am(i) = 1/[E + I WC(k) (i - 1) - WC(£) (i - l)lmll at each 
iteration i, with E a small positive number to avoid division 
by zero. In this case, we write: 

8WC(k) h = diag { 
1[
/ 1 

I
}

L sign(8wk,£) (6) 
E + Wk,£ m m=1 

where 8Wk,£ refers to the difference WC(k) - WC(£). 

We are interested in a distributed strategy for solving (2) 
that relies only on in-network processing. For this reason, we 
associate with the j-th cluster the regularized problem (Pj): 

��nJc)WCj) = L lE{ldk(i) -xr(i)wciI2}+ 
J kECj 

T) L L (Pk£ + P£k)!(WCj - WC(£»)· 
kECj £ENk \Cj 

(7) 

Note that the cost functions in (P) and (Pj) have the same 
subgradient vector with respect to WCi. In order that each 
node can solve the problem autonomously and adaptively us­
ing only local interactions, we shall derive a distributed itera­
tive algorithm for solving (P) by considering (Pj) since both 
cost functions have the same subgradient information. 

2.2. Multitask diffusion with sparsity regularization 

Proceeding as in [3, 16], it is possible to derive several diffu­
sion strategies for solving (Pj) and (P) in a fully distributed 
and adaptive manner. In this work, we focus on the Adapt­
then-Combine (ATC) strategy. Based on the subgradient 
method for non-differential convex functions, we arrive at the 
following multitask diffusion algorithm for solving (P): 

"!f1k(i+1) 

= wk(i) + fJk L C£k x£(i) [d£(i) - xl (i)Wk(i)l 
£ENknC(k) 

1 
- fJkT) L 2

(Pk£ + P£k) 8Wk!(Wk(i) - w£(i)) 
£ENk \C(k) 

wk(i + 1) = L a£k"!f1£(i + 1), 

(8) 
for k = 1, . . .  , N, where Wk( i) denotes the local estimate of 
wk at node k and iteration i, fJk is a positive step-size pa­
rameter and 8Wk! is the subgradient of! with respect to Wk, 
given We. In the first step, which corresponds to the adap­
tation stage, the coefficients C£k are the weights that node k 
assigns to information coming from each node C of its cluster. 
In the second step, that is, in the combination stage, node k 
combines through the coefficients a£k the intermediate esti­
mates "!f1 £( i + 1) from its neighbors that belong to its cluster. 
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The non-negative coefficients aRk and CRk in (8) are required 
to satisfy the following constraints: 

L CRk = 1, and CRk = 0 if k rf- NR n C({I), (9) 
kENenC(R) 

L aRk = 1, and aRk = 0 if {I rf- Nk n C(k). (10) 
RENknC(k) 

Coefficients aRk and CRk are grouped into a left-stochastic ma­
trix A and a right-stochastic matrix C. 

3. PERFORMANCE ANALYSIS 

3.1. Error vector recursion 

Let w( i), w* and w( i) denote the block weight estimate vec­
tor, the block optimum vector, and the block weight error vec­
tor, namely, 

w(i) � COI{Wl(i), ... ,WN(in 
w* � col{wi, ... ,w"N} 

w(i) � w* - w(i). 

(11) 
(12) 
(13) 

Using the linear data model (1), the error recursion for the 
diffusion strategy (8) can be written in the following form: 

where 

w(i + 1) = 8(i)w(i) - g(i) + b(i), 

8(i) � AT (hN - MR",(i)), 
g(i) � ATMCT COI{Xk(i)Zk(ink"=l' 
b(i) � 1] ATMr(i), 

(14) 

(15) 
(16) 
(17) 

with A � A ® h, C � C ® h. Matrices M and R",(i) 
are N x N block diagonal with k-th block given by MkI L 

and LRENknC(k) CRkXR(i)xJ (i), respectively. Let us denote 
by PkR the quantity (PkR + PRk)/2, and introduce the LN x 1 
vector: 

r(i) = COI{ L PkROWk!(Wk(i)-WR(i)) }�=l' (18) 
RENk \C(k) 

Recursion (14) can be used to examine the performance of the 
algorithm in the mean and mean-square-error sense. Due to 
space limitations, we only list the main results without show­
ing the proofs. The arguments are along the lines developed 
in [3,16] for single-task diffusion with proper adjustments to 
handle the multi task scenario. 

Assumption 1. The regression vectors Xk( i) arise from a 
zero-mean random process that is temporally white and spa­
tially independent. 

Assumption 2. The step-sizes Mk are sufficiently small 
so that terms that depend on higher order powers of the step­
sizes can be ignored. 

3.2. Mean behavior analysis 

For any initial conditions, the multitask diffusion strategy (8) 
asymptotically converges in the mean if the step-sizes satisfy: 

2 
o < Mk < A (R ) , k = I, . . .  , N, (19) max k 

where Rk � LRENknC(k) CRkR",,R and AmaxO denotes the 
maximum eigenvalue of its matrix argument. The asymptotic 
mean bias is given by 

lim lE{w(i)} = 1](hN -8)-lAT M lim lE{r(in, (20) 
Z --+ CXJ z --+ CXJ 

where 
8 = lE{8(i)} = AT (hN - MR), (21) 

with R denoting the N x N block diagonal matrix whose k­
th block is Rk. Recall that the block maximum norm of an 
N x 1 block vector x is defined as [3]: 

(22) 

where Xk is the k-th block entry. The block maximum norm 
of the mean bias (20) can be bounded as follows: 

lim IllE{ w( in Ilb,oo � 
1]M

II�tx , (23) 
'-+00 1 - b,oo 

where Mmax is the largest step-size and Tmax � maXi Ilr(i) Ilb,oo. 
Note that Tmax is finite since Ilr(i)llb,oo is upper bounded by 
maxl:Sk:SN L�l PkRlloWk!(Wk(i) - wR(i))112 and the Eu­
cledian norm of (3) and (6) is bounded by VL and V;, 
respectively. Under condition (19), the induced block maxi­
mum norm of 8 is strictly less than 1. 

3.3. Mean-square-error stability 

To examine mean-square-error stability, we study the weighted 
mean-square deviation lE{llw(i)II�}' where � is a positive 
semi-definite matrix that we are free to choose. Let us denote 
by a the vectorized version of�. We obtain from (14) the 
following recursion: 

lE{llw(i + 1)11;} = lE{llw(i)II}l7} + [vec(G)]T a + h(i), 
(24) 

where we use the notation Ilxll� and Ilxll; interchangeably 
to denote the same quantity x T� x. The other terms in (24) 
are given by: 

G � ATM CTSCMA (25) 
:F � lE{8T (i) ® 8T (in;::::: 8T ® 8T (26) 

h( i) � 1]2lE{llr(i)II�AEATM} + 

21] lE{r T (i) M A� 8 w(in, (27) 
where S is an N x N block diagonal matrix whose k-th block 
is cr;,kR""k. The approximation in (26) follows from As­
sumption 2 and requires sufficiently small step-sizes. For any 

3518 



"� � ", 

01 \ 10 II ;>Q 25 :lO l5 ..., ..; [,(I 

Node number k 

(a) Network topology. (b) Regression and noise variances. 

Fig. 1. Experimental setup. 

initial conditions, the multitask diffusion algorithm with spar­
sity based regularization (8) is mean-square stable if the error 
recursion (14) is mean stable and the matrix F is stable. Once 
convergence is achieved, then the variance of the weight error 
vector w( i) satisfies the following relation in steady-state: 

lim IE{llw(i + l)IITI-F)u} = [vec(G)]T a + hoo, (28) t--+oo 

where it can be argued that hoo -£ limi--+oo h( i) exists. 
Through a proper selection of the weighting matrix � or 
vector a, relation (28) allows us to derive several perfor­
mance metrics such as the mean-square deviation (MSD) for 
network or nodes. For example, the network MSD given by 
limi--+oo -bIE{llw(i)112} is obtained for 

1 1 a = N(I - F)- vec(INd· 

4. SIMUL ATION RESULTS 

(29) 

We considered a network consisting of 50 agents with the 
topology shown in Fig. l(a). The regression vectors were 
zero-mean Gaussian distributed with covariance Rx k = 

0';' kIL. The noises zk(i) were zero-mean i.i.d. Ga�ssian 
ra�dom variables, independent of any other signal, with vari­
ance 0'; k' The variances 0';' k and 0'; k are shown in Fig. 2(b). 
We ran the proposed algorithm by setting Cek = INe nC ({I) 1-1 
for k E NenC({I) and aek = INknC(k)I-1 for {I E NknC(k). 
The regularization weights were set to Pk£ = INk \ C(k)I-1 
for {I E Nk \ C (k). We used a constant step-size J..Lk = 0.03 for 
all k, a sparsity strength 'T} = 0.03 for the {II-regularization, 
'T} = 0.015 for the reweighted {II-regularization with E = 0.1. 
The results were averaged over 100 Monte-Carlo runs. 

The optimum vectors were set to wej = Wo + bCj at each 
cluster with Wo = [-2 -1 -103 -20 103 1 21]T. First, we 
set bc, to 015, bC2 to [2 Ou - 1 02]T, bC3 to [2 05 2 OS]T, 
bC4 to [2 1 04 2 05 - 1 02]T and bC5 to [0 1 04 20s]T. 
Observe that at most 4 entries over 15 differed between clus­
ters. After 750 iterations, we set bC2 to [2 1 1 2 1 1 2 Os], 
bC3 to [3223223 OS]T, bC4 to [4334334 OS]T and 
bC5 to [5 4 4 5 4 4 5 OS]T. In this way, 7 entries over 15 
differed between clusters. We compared 6 algorithms: the 

(a) Network MSD comparison. 
�LIIIS 
�LMSwithll 
-+-LMS with rew. (1 

-1I"!ultLdif.LMS 
-frMulti. dil. LMS with (1 

-+Multi. dil. LMS with rew. (1 

-J50'--�'OO�'=OO ����.oo��o--����� 
Iteration i 

�LMS 
�LMSwith(l 
-.-LMS with rew. 11 

-/-'·!ulti.dif.LMS 
"""'Irllluiti. djr. LMS with (I 
-+ r.-!ulti. dif. withrew. II 

(b) MSD over identical entries. (c) MSD over distinct components. 

Fig. 2. MSD learning curves. 

non-cooperative LMS algorithm, the so-called spatially regu­
larized LMS algorithm [17] (A = C = I) with {lrnorm and 
reweigh ted {II-norm, the multitask diffusion LMS algorithm 
obtained from (8) by setting 'T} = 0, and the multitask diffu­
sion LMS algorithm with {II and reweigh ted {II-norm regular­
ization. 

As shown in Fig. 2(a), when the optimums share a suffi­
cient number of common entries, the multitask strategies with 
{lrnorm and reweigh ted {lrnorm regularization enhance the 
network MSD performance. When the number of common 
entries decreases, sparsity-promoting regularizers become 
less efficient and only the reweighted {II-norm regularizer 
allows to improve the performance. In Fig. 2(b), we show 
the MSD learning curves for the common parameter vector 
entries among clusters. Due to cooperation among clusters, 
we observe that the multi task approach makes the estima­
tion of these entries more accurate. In Fig. 2(c), we report 
the learning curves over instants [0 750] for entries that dif­
fer among clusters. We note that the reweigh ted {II-norm 
algorithm outperforms the other algorithms. 

5. CONCLUSION 

In this work, we proposed a diffusion-type algorithm for solv­
ing problems that require a simultaneous estimation of mul­
tiple parameter vectors with a prior information on similar­
ities between neighboring clusters. Two different sparsity­
based regularization terms were used, the {lrnorm and the 
reweighted {II-norm. We examined conditions for stability in 
the mean and mean-square sense. Simulations results were 
presented to illustrate the benefit of multitask learning with 
similarity measures. 
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