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ABSTRACT

In [1], an important step toward the characterization of dis-
tributed detection over adaptive networks has been made by
establishing the fundamental scaling law of the error proba-
bilities. However, empirical evidence reported in [1] revealed
that a refined asymptotic analysis is necessary in order to cap-
ture the exact impact of network connectivity on the detection
performance of each individual agent. Here we address this
open issue by exploiting the framework of exact asymptotics.

Index Terms— Distributed detection, adaptive network,
diffusion strategy, large deviations, exact asymptotics.

1. MOTIVATION AND RELATED WORK

We consider distributed detection problems over adaptive net-
works, where dispersed agents learn continually from stream-
ing data by means of local interactions. The requirement of
adaptation allows the network of detectors to track drifts in
the statistical conditions of the data and models. The require-
ment of cooperation allows each agent to deliver performance
that is superior to what would be obtained if it were acting in-
dividually. These simultaneous requirements can be achieved
by employing diffusion algorithms with constant step-size µ.

While the general topic of distributed detection is rich
(see, e.g., [3–9] as entry points on the subject), the aforemen-
tioned setting is less explored, where continuous learning and
adaptation needs to be embedded into the operation of the de-
tectors. With reference to decentralized networks, solutions
based on consensus strategies with decaying step-size have
been proposed in [10–15]. However, to enable adaptation,
it has been shown that diffusion strategies with constant step-
size offer advantages in terms of enhanced stability and mean-
square-error performance [16–20]. This is due to an inherent
asymmetry in the update equations for consensus implemen-
tations, which can cause an unstable growth in the state of the
network even when each individual agent is stable.

The problem of using diffusion strategies for detection
purposes has been considered in [21], with reference to a
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Gaussian problem. More recently, the general problem of dis-
tributed detection over adaptive networks under more relaxed
conditions has been pursued in [1, 2]. Resorting to the theory
of large deviations [22, 23], it has been shown in [1, 2] that,
as µ goes to zero, the steady-state error probabilities of each
agent vanish exponentially as functions of 1/µ, and that all
agents share the same error exponents. However, numerical
evidence reported in [1] shows that, depending on their con-
nectivity, different agents will exhibit different error probabil-
ities (even if they exhibit the same scaling law to the leading
exponential order), and that large-deviations theory fails to
capture the impact of network connectivity on performance.
This deficiency can be ascribed to a known limitation of large-
deviations analysis, namely, to the fact that it neglects sub-
exponential terms. A simple example can be useful to illus-
trate the practical implications of this aspect. Assume net-
work agents 1 and 2 exhibit asymptotic error probabilities P1

and P2 of the form:

P1 = e

� 1
µ
, P2 = 2 e

� 1
µ
= e

� 1
µ [1+o(1)]

, (1)

where o(1) stands for any correction such that o(1) ! 0 as
µ ! 0. These two probabilities have the same error expo-
nent multiplying �1/µ, but the error probability at agent 2
is always twice that of agent 1, a feature that is lost if the
sub-exponential corrections are neglected.

To overcome these issues, in this work we exploit the
framework of exact asymptotics [24], and extend the results
of [1, 2] in several directions. We provide accurate analyti-
cal formulas for the error probabilities, leading to a powerful
understanding of the universal behavior of distributed detec-
tion over adaptive networks: as functions of 1/µ, the error
(log-)probability curves corresponding to different agents i)

stay nearly-parallel to each other, and ii) are ordered accord-
ing to the connectivity of each agent. In a nutshell, the more
connected an agent is, the lower its error probability curve
will be. We also enlarge the setting from the case of doubly-
stochastic combination policies considered in [1, 2], to the
general setting of right-stochastic combination policies. Our
results allow a refined analysis of the interplay between net-
work structure and inference performance, showing interest-
ing and somehow unexpected behavior, and the lesson learned
is that connectivity matters.
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Notation. We use boldface letters to denote random variables,
and normal font letters for their realizations. Capital letters
refer to matrices, small letters to both vectors and scalars. Ex-
ceptions to these rules will be obvious from the context. The
r-th derivative of a function f(t) will be denoted by f

(r)
(t),

with the convention f

(0)
(t) = f(t). When convenient, the

first three derivatives will be alternatively denoted by f

0
(t),

f

00
(t), and f

000
(t). The notation f

µ

= O(µ) means that the
ratio f

µ

/µ stays bounded as µ ! 0, while o(1) denotes a
term such that o(1) ! 0 as µ ! 0.

2. PROBLEM FORMULATION

A network of agents collects observations about a physi-
cal phenomenon of interest. Data are assumed to be spa-
tially and temporally independent and identically distributed
(i.i.d.). From the observation measured at time n, the k-
th agent computes its local statistic (the observation itself,
or a suitable function thereof), which is denoted by x

k

(n),
k = 1, 2, . . . , S. Following the distributed detection frame-
work developed in [1, 2], we focus on the class of diffusion
strategies for adaptation over networks, and in particular on
the ATC (Adapt-Then-Combine) implementation [18]. In the
ATC algorithm, each node k updates its state from y

k

(n� 1)

to y

k

(n) through local cooperation as follows:

v

k

(n) = y

k

(n� 1) + µ[x

k

(n)� y

k

(n� 1)], (2)

y

k

(n) =

SX

`=1

a

k,`

v

`

(n), (3)

where 0 < µ ⌧ 1 is a small step-size parameter. It is seen
that node k first uses its local statistic, x

k

(n), to update its
state from y

k

(n � 1) to an intermediate value v

k

(n). The
other network agents simultaneously perform similar updates
using their local statistics. Subsequently, node k aggregates
the intermediate states of its neighbors using nonnegative con-
vex combination weights {a

k,`

} that add up to one. Again, all
other network agents perform a similar calculation. Collect-
ing the combination weights into a square matrix A = [a

k,`

],
then A is a right-stochastic matrix, namely, the entries on each
row add up to one. Formally:

a

k,`

� 0, A1 = 1, (4)

with 1 being a column-vector with all entries equal to 1. We
shall assume that A has second largest eigenvalue magnitude
strictly less than one, which yields [19, 25]:

B

n

= [b

k,`

(n)] , A

n

n!1�! 1p, (5)

where the row vector p = [p1, p2, . . . , pS ], usually referred to
as the Perron eigenvector of A (see, e.g., [19, 20]), satisfies:

pA = p, p

`

> 0,

SX

`=1

p

`

= 1. (6)

The required condition on A is automatically satisfied by net-
work topologies that are strongly-connected [20], i.e., when
there is always a path with nonzero combination coefficients
between any pair of nodes, and at least one node has a self-
loop (a

k,k

> 0 for some agent k).
In order to characterize an inference system based upon

the diffusion output y
k

(n), knowledge of the distribution of
y

k

(n) is crucial. This knowledge is seldom available, except
for special cases (e.g., Gaussian observations). A common
and well-established approach in the adaptation literature [18,
26] to address this difficulty is to focus on i) the steady-state
properties (as n ! 1), and ii) the small step-size regime
(µ ! 0).

We start by considering the steady-state behavior of y
k

(n)

for a given step-size µ. The existence of a steady-state ran-
dom variable characterizing the diffusion output has been es-
tablished in [1, 2] for doubly-stochastic matrices. The result
can be extended to right-stochastic matrices, and is (the sym-
bol means convergence in distribution):

y

k

(n)

n!1 y

?

k,µ

,
1X

i=1

SX

`=1

µ (1� µ)

i�1
b

k,`

(i)x

`

(i) (7)

In our distributed detection formulation, the statistical prop-
erties of x

k

(n) will depend upon an unknown binary state of
nature, say, H0 or H1. The statistics x

k

(n) are spatially and
temporally i.i.d., conditioned on the hypothesis that gives rise
to them. When needed, a subscript 0 or 1 will be appended to
the statistical operators to denote the particular hypothesis in
force. The decision rule of agent k at time n is of the form:

y

k

(n)

H0

Q
H1

� (8)

so that the (steady-state) Type-I and Type-II error probabili-
ties are defined as, respectively:

↵

k,µ

, P0[y
?

k,µ

> �], �

k,µ

, P1[y
?

k,µ

 �]. (9)

3. MAIN RESULT

Our main contributions are now collected in two theorems,
stated without proofs for space limitations. A primary role
in the forthcoming analysis will be played by the logarithmic
moment generating functions of the local statistic x

k

(n) and
of the steady-state variable y?

k,µ

. These quantities are defined
as, respectively:

 (t) , lnE[etxk(n)
], �

k,µ

(t) , lnE[ety
?
k,µ

]. (10)

The first theorem furnishes a characterization of �
k,µ

(t). It
provides analytical formulas for �

k,µ

(t) and all its deriva-
tives, in terms of  (t) and of the combination weights, and
it establishes the asymptotic behavior of �

k,µ

(t) and all its
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derivatives as µ ! 0. As we shall see later (Theorem 2), this
detailed characterization of �

k,µ

(t) is crucial to obtain the ex-
act asymptotics of the error probabilities.

THEOREM 1 (Fundamental properties of �

(r)
k,µ

(t)). As-
sume that  (t) < 1 for all t 2 R, and let

�(t) ,
SX

`=1

Z
p`t

0

 (⌧)

⌧

d⌧. (11)

Then, for k = 1, 2, . . . , S, and for r = 0, 1, . . . , it holds that

�

(r)
k,µ

(t) =

1X

i=1

SX

`=1

[µ(1� µ)

i�1
b

k,`

(i)]

r⇥

 

(r)
�
[µ(1� µ)

i�1
b

k,`

(i)]t

�
(12)

and that (as µ ! 0):

�

(r)
k,µ

(t/µ)

µ

r�1
= �

(r)
(t) +O(µ) (13)

⇤
Before stating our second theorem, it is useful to introduce
the Fenchel-Legendre transform of �(t) (denoted by the cor-
responding capital letter), along with its essential domain,
namely [22, 23]:

�(�) , sup

t2R
[�t� �(t)], D� , {� 2 R : �(�) < 1}.

(14)
The notation Do

� will represent the interior of the set D�.
We focus, without loss of generality1, on the probability

P[y?

k,µ

> �] for � > E[x]. For doubly-stochastic combina-
tion matrices, it was established in [1, 2] that

P[y?

k,µ

> �] = e

� 1
µ [�(�)+o(1)]

. (15)

This form highlights the fact that sub-exponential terms are
neglected by large-deviations analysis. A refined study can be
pursued by seeking an asymptotic approximation, P

k,µ

(�),
that ensures the stronger conclusion:

P[y?

k,µ

> �] = P
k,µ

(�)[1 + o(1)], (16)

a kind of asymptotic equivalence that will be denoted by

P[y?

k,µ

> �] ⇠ P
k,µ

(�). (17)

This framework is commonly referred to as exact asymptotics,
and has been originally studied in [24] with reference to the
simplest setting of normalized sums of i.i.d. random variables
— see also [22, 23]. Unfortunately, the adaptive framework
is fundamentally different from the latter setting, such that

1Theorem 2 holds unchanged for the complementary case P[y?
k,µ  �]

with � < E[x], but for the fact that ✓� < 0.

we cannot directly use the existing results, and the required
analysis is more involved. The main result established in this
article can now be formally stated as follows.

THEOREM 2 (Exact asymptotics of y?

k,µ

as µ ! 0). As-
sume that the distribution of x

k

(n) is not of lattice type, and
that  (t) < +1 for all t 2 R. Let � 2 Do

�, with � > E[x],
and let ✓

�

> 0 be the unique solution to the stationary equa-
tion �0(✓

�

) = �. Then, for k = 1, 2, . . . , S, the asymptotic
equivalence P[y?

k,µ

> �] ⇠ P
k,µ

(�) holds with

P
k,µ

(�) =

r
µ

2⇡✓

2
�

�

00
(✓

�

)

e

� 1
µ [�(�)+✏k,µ(✓�)] (18)

where

✏

k,µ

(t) , [�(t)� µ�

k,µ

(t/µ)] +

[�

0
(t)� �

0
k,µ

(t/µ)]

2

2�

00
(t)

(19)
⇤

The key ingredients to computing P
k,µ

(�) in (18) are the log-
arithmic moment generating function  (t) of the local statis-
tics, and the combination matrix A. Indeed, the quantities
�(�) and ✓

�

depend on the function �(t), which in turn de-
pends on  (t) and on the limiting combination weights p

`

.
The correction term ✏

k,µ

(t) depends on  (t) and on the actual
combination weights b

k,`

(i). Despite its apparent complex-
ity, Eq. (18) possesses a well defined structure. First, observe
that, from (12) applied with r = 0, 1, both terms on the RHS
of (19) vanish as µ ! 0, so that we can write

P
k,µ

(�) = e

� 1
µ [�(�)+o(1)]

. (20)

Then, let us examine in more detail the terms of order o(1)
that collect all the sub-exponential corrections appearing
in (18). They can be conveniently separated into two cat-
egories. The first term is

q
µ

2⇡✓2
� �

00(✓�)
. This kind of sub-

exponential refinement is typical in the framework of exact
asymptotics, and is a consequence of a local Central Limit
Theorem — see [22–24]. Observe that this correction is
related to the network topology only through the Perron
eigenvector, and is therefore independent of the particular
agent index k. The second correction ✏

k,µ

(✓

�

), instead, de-
pends on the agent index k, and takes into account the entire
network topology and combination weights. In summary,
through (18) we arrive at a detailed assessment of the be-
havior of distributed detection over adaptive networks: as
functions of 1/µ, the error (log-)probability curves corre-
sponding to different agents not only stay nearly-parallel to
each other (as already discovered in [1, 2]), but they are also
ordered following a criterion dictated by the term ✏

k,µ

(✓

�

).

4. NUMERICAL EXAMPLES

We consider a network made of S = 10 agents, with the
topology shown in the inset of Fig. 1. In the following, N

k
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Fig. 1. Laplace example in (24), with ⇢ = 0.6, and combination weights
following the Metropolis (Eq. (21), doubly stochastic) and the uniform av-
eraging (Eq. (22), right stochastic) rules. The steady-state performance of
agents 2 (magenta) and 4 (blue) is displayed.

is the neighborhood of the k-th agent (including k itself), and
n

k

the cardinality |N
k

|. Moreover, we assume that a
k,`

= 0

if ` /2 N
k

. Two different combination policies are tested. The
first one is the Metropolis rule [20]:

a

k,`

=

8
<

:

1/max{n
k

, n

`

}, ` 2 N
k

\ {k},
1�

X

m2Nk\{k}
a

k,m

, ` = k.

(21)
This choice provides a doubly-stochastic A. The second com-
bination policy is the uniform averaging rule [20]:

a

k,`

= 1/n

k

, ` 2 N
k

, (22)

yielding a right-stochastic A, whose Perron eigenvector is
p

`

=

n`PS
m=1 nm

— see [20].
We consider a canonical shift-in-mean detection problem

with Laplace noise:

H0 : d

k

(n) ⇠ L (d) , 1

2

e

�|d|
, (23)

H1 : d

k

(n) ⇠ L (d� ⇢), (24)

where d

k

(n) denotes the measurement collected by agent k
at time n, L (d) is the unit-scale Laplace density, and ⇢ > 0

is the shift-in-mean parameter. The local statistics x
k

(n) are
chosen as the local log-likelihood ratios:

x

k

(n) = ln

✓
L (d

k

(n)� ⇢)

L (d

k

(n))

◆
= |d

k

(n)|� |d
k

(n)� ⇢|,
(25)

whose logarithmic moment generating functions are [1, 14]:

 0(t) =
e

�t⇢

2

+

e

(t�1)⇢

2

+

e

�⇢/2

2

sinh[⇢(t� 1/2)]

t� 1/2

, (26)

and  1(t) =  0(�t). Let us now examine the distributed
network of detectors in operation. To work in the high-
performance regime, we resort to Monte Carlo simulation
with importance sampling techniques [27] (details omitted
for space constraints). We refer to a sufficiently large time
horizon, such that the steady-state assumption applies. Fol-
lowing [1], we set the detection threshold to � = 0. By sym-
metry arguments, the error probabilities of first and second
kind coincide, so that the terminologies “error probability”
and “error exponent” refer to any of these errors.

In Fig. 1 we display the theoretical (Theorem 2) and em-
pirical probability curves of agents 2 and 4, for the Metropolis
matrix in (21) (doubly stochastic) and for the uniform averag-
ing matrix (22) (right stochastic). We see that, for a given ma-
trix, the curves of the two agents stay nearly-parallel to each
other for sufficiently small values of the step-size µ, exhibit-
ing an exponential decay with the same error exponent, which
matches perfectly the results in [1,2]. However, the first-order
characterization provided by large-deviations analysis is not
powerful enough to capture another important feature: for a
given matrix, the curves of the two agents are ordered, and
the ordering reflects the degree of connectivity of each agent.
This deficiency is addressed by the theoretical formulas given
by Theorem 2, which are closely approached by the empirical
probability points as µ ! 0, and the agreement is excellent.
What in [1] was only a partial evidence arising from a par-
ticular experiment, emerges now as the universal behavior of
distributed detection over adaptive networks.

To get further insights, we compare the performance cor-
responding to the combination matrices (21) and (22). Here
the comparison is made for two systems operating with the
same value of the step-size µ. Clearly, the analysis should
be complemented by examining the transient behavior, i.e.,
the adaptation properties, of the two combination policies.
To begin with, let us evaluate the error exponents pertain-
ing to the two systems, which yields �doubly(0) ⇡ 0.75 >

�right(0) ⇡ 0.7. The doubly-stochastic combination policy
asymptotically outperforms the right-stochastic one, which is
perhaps not unexpected, in view of the asymptotic equipar-
tition of the doubly-stochastic weights. However, examin-
ing Fig. 1, we see that the relative performance of the dif-
ferent combination policies depends on the connectivity of
the individual agent. For instance, for the well-connected
agent 4, the doubly-stochastic policy delivers superior per-
formance, while exactly the converse is true for the sparsely
connected agent 2. An explanation for this behavior can be
as follows. The second largest magnitude eigenvalues of the
doubly-stochastic and of the right-stochastic combination ma-
trices are: �doubly ⇡ 0.83 > �right ⇡ 0.7, suggesting that con-
vergence to the pertinent Perron eigenvector will be faster for
the right-stochastic weights. Our results indicate that, for the
sparsely connected agent 2, the benefits of the higher (dou-
bly stochastic matrix) exponent are more than compensated
by the faster (right stochastic matrix) convergence.
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