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ABSTRACT 

This work studies distributed primal-dual strategies for adaptation 
and learning over networks from streaming data. Two first-order 
methods are considered based on the Arrow-Hurwicz (AH) and aug­
mented Lagrangian (AL) techniques. Several results are revealed 
in relation to the performance and stability of these strategies when 
employed over adaptive networks. It is found that these methods 
have worse steady-state mean-square-error performance than primal 
methods of the consensus and diffusion type. It is also found that 
the AH technique can become unstable under a partial observation 
model, while the other techniques are able to recover the unknown 
under this scenario. It is further shown that AL techniques are stable 
over a narrower range of step-sizes than pri mal strategies. 

Index Terms- Augmented Lagrangian, Arrow-Hurwicz algo­
rithm, primal strategies, diffusion strategies, consensus strategies 

1. INTRODUCTION AND RELATED WORK 

Distributed estimation is the task of estimating and tracking slowly 
drifting parameters by a network of agents, based solely on local in­
teractions. In this work, we focus on distributed strategies that enable 
continuous adaptation and learning from streaming data by relying 
on stochastic gradient updates that employ constant step-sizes. The 
resulting networks become adaptive in nature, which means that the 
effect of gradient noise never dies out and seeps into the operation 
of the algorithms. For this reason, the design of such networks re­
quires careful analysis in order to assess performance and provide 
convergence guarantees. 

Many efficient algorithms have been proposed in the literature 
for inference over networks [1-13] such as consensus strategies [9-
12] and diffusion strategies [2-8]. These strategies belong to the 
class of primal optimization techniques since they rely on estimating 
and propagating the primal variable. Previous studies have shown 
that sufficiently small step-sizes enable these strategies to learn well 
and in a stable manner. Explicit conditions on the step-size param­
eters for mean-square-error stability, as well as closed-form expres­
sions for their steady-state mean-square-error performance already 
exist (see, e.g., [4,14] and the many references therein). Besides pri­
mal methods, in the broad optimization literature, there is a second 
formidable class of techniques known as primal-dual methods such 
as the Arrow-Hurwicz (AH) method [15,16] and the augmented La­
grangian (AL) method [16,17]. These methods rely on propagating 
two sets of variables: the primal variable and a dual variable. The 
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main advantage relative to primal methods is their ability to avoid 
ill-conditioning when solving constrained problems. 

In contrast to existing useful studies on primal-dual algorithms 
(e.g., [18,19]), we shall examine this class of strategies in the con­
text of stochastic optimization over adaptive networks, where the 
optimization problem is not necessarily static anymore (i.e., its min­
imizer can drift with time) and where the exact form of the cost 
function need not be known beforehand because the statistical dis­
tribution of the data is generally unavailable. We therefore develop 
adaptive primal-dual distributed variants that can learn continuously 
from streaming data. This step is challenging because the dual func­
tion cannot be determined explicitly any longer, and, consequently, 
the computation of the optimal primal and dual variables cannot as­
sume knowledge of the dual function. We address this difficulty 
by employing constant step-size adaptation and instantaneous data 
measurements to approximate the search directions. 

We subsequently examine the behavior of AH and AL strategies 
under a partial observation model. This model refers to the impor­
tant situation in which some agents may not be able to estimate the 
unknown parameter on their own, whereas the aggregate informa­
tion from across the entire network is sufficient for the recovery of 
the unknown vector through local cooperation. We discover that the 
AH strategy can fail under this condition. More specifically, the AH 
network can become unstable even when the network has sufficient 
information to enable recovery of the unknown. In comparison, we 
show that the AL, consensus, and diffusion strategies are able to re­
cover the unknown under the partial observation model. 

We also examine the steady-state mean-square-deviation (MSD) 
of the primal-dual adaptive strategies and reveal that the Arrow­
Hurwicz method achieves the same MSD performance as non­
cooperative processing. This is a disappointing property for AH 
since the algorithm employs cooperation, and yet the agents are 
not able to achieve better performance. On the other hand, the 
augmented Lagrangian algorithm improves on the performance of 
non-cooperative processing, and can be made to approach the perfor­
mance of diffusion and consensus strategies but only for large values 
of the regularization parameter. This means that the AL algorithm 
must utilize small step-sizes to approach the same performance 
level that other distributed (consensus and diffusion) algorithms can 
achieve with more reasonable parameter values. In addition, we 
show that the stability range for the AL algorithm is inversely pro­
portional to the regularization parameter. This implies that in order 
for the AL algorithm to achieve the same MSD performance as the 
consensus and diffusion strategies, it is necessary for the AL strategy 
to utilize a smaller step-size to guarantee convergence, which in turn 
slows down its learning process. 
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2. ADAPTIVE PRIMAL STRATEGIES 

In this section, we describe the problem formulation and review the 
two main primal techniques: diffusion and consensus for later user. 
Thus, consider a connected network of N agents that wish to esti­
mate a real M x 1 parameter vector WO in a distributed manner. Each 
agent k = 1,2, . . .  , N has access to real scalar observations dk (i) 
and zero-mean real 1 x M regression vectors Uk,i that are assumed 
to be related via the model: 

(1) 

where vk(i) is zero-mean real scalar random noise, and i is the time 
index. Models of the form (1) arise in many useful contexts in appli­
cations involving channel estimation, target tracking, equalization, 
beamforming, and localization [20,21]. We denote the second-order 
moments by 

Ru,k =lEULUk,i' rdu,k =lEuLdk(i), O'�,k =lEv�(i) (2) 

and assume that the regression and noise processes are each tempo­
rally and spatially white. We also assume that Uk,i and vc(j) are 
independent of each other for all k, £ and i, j. We allow for the pos­
sibility that some individual covariance matrices, Ru,k, are singular 
but assume that the sum of all covariance matrices across the agents 
is positive-definite: 

N 
LRu,k > ° 
k=1 

(3) 

This situation corresponds to the partial observation scenario where 
some of the agents may not able to solve the estimation problem on 
their own, and must instead cooperate with other nodes in order to 
estimate wo. 

To determine wo, we consider an optimization problem involv­
ing an aggregate mean-square-error cost function: 

N 
m2n � LlE(dk(i) - Uk,iW)2 (4) 

k=1 
It is straightforward to verify that Wo from (1) is the unique mini­
mizer of (4). We will compare the performance of the primal-dual 
algorithms introduced in the next section to baseline primal algo­
rithms to solve (4) in a distributed manner such as diffusion strate­
gies [2,3,14,21]: { 'l/Jk,i : Wk,i-I + J-lUI,i(dk(i) - Uk,iWk,i-l) (Sa) 

Wk,i - L aCk'I/Jc,i (Sb) 
CENk 

where J-l > ° is a small step-size parameter and Nk denotes the 
neighborhood of agent k. Moreover, the coefficients {ack} that com­
prise the matrix A are non-negative convex combination coefficients 
that satisfy the conditions: 

aRk 2: 0, LaRk = 1, aRk = ° if £ tf- Nk (6) 
RENk 

In other words, the matrix A is left-stochastic and satisfies AT:liN = 
:liN. In (Sa)-(Sb), each agent k first updates its estimate Wk,i-I to 
an intermediate value by using its sensed data {dk (i), Uk,i} through 
(Sa), and subsequently aggregates the information from the neigh­
bors through (Sb). A connected network is said to be strongly­
connected when at least one akk is strictly positive; i.e., there exists 

at least one agent with a self-loop, which is reasonable since it means 
that at least one agent in the network should have some trust in its 
own data. We will assume that the network is strongly connected for 
the remainder of the article. 

We will also compare the performance of the primal-dual al­
gorithms to that of consensus-type strategies (albeit with constant 
step-sizes) [9-12]: 

(7a) { <Pk,i-I = L aCkwc,i-l 
RENk 

Wk,i = <Pk,i-I + J-luL(dk(i) - Uk,iWk,i-l) (7b) 

It is important to note the asymmetry in the update (7b) with both 
{<Pk,i-I,Wk,i-I} appearing on the right-hand side of (7b), while 
the same state variable Wk,i-I appears on the right-hand side of 
the diffusion strategy (Sa). This asymmetry has been shown to be 
a source of instability for consensus-based solutions [4,14,22]. 

When the step-size parameter is sufficiently small, the steady­
state deviation (MSD) of the consensus and diffusion strategies can 
be shown to match to first-order in J-l [14]. For example, when A is 
doubly-stochastic, it holds that: 

� iN T, ((t, ,,", f(t, a;,,,",)) + 0("') 

(8b) 

A related expression also exists for the case when A is left-stochastic 
and it will further involve the entries of the Perron vector of A [4,14]. 
Furthermore, it can be shown that the diffusion strategy (Sa)-(Sb) 
is guaranteed to converge in the mean for any connected network 
topology, i.e., lEwk,i ---+ wo, as long as the agents are individually 
mean stable. This condition is satisfied for step-sizes satisfying: 

. { 2 } ° < J-l < mm ISkSN Amax(Ru,k) (9) 

In contrast, consensus implementations can become unstable for 
some topologies even if all individual agents are mean stable [14,22]. 

3. ADAPTIVE PRIMAL-DUAL STRATEGIES 

To motivate the adaptive primal dual strategy, we start by replac­
ing (4) by the following equivalent constrained optimization prob­
lem where the variable w is replaced by Wk: 

N 
min � LlE(dk(i) - Uk,iWk)2 (lOa) 

w k=1 
s.t. WI = W2 = ... = WN (lOb) 

The following definition is useful [23]. 

Definition 1 (Incidence matrix of an undirected graph). Given a 
graph G, the incidence matrix C = [Cek] is an E x N matrix, where 
E is the total number of edges in the graph and N is the total number 
of nodes, with entries defined as follows: { + 1, k is the lower indexed node connected to e 

Cek = -1, k is the higher indexed node connected to e 

0, otherwise 
Thus, C:liN = Q) E. Self-loops are excluded. • 
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Since the network is connected, we may rewrite (lOa)-(lOb) as 

min w 
1 

N 
"2 LlE(dk(i) - Uk,iWk)2 (lla) 

k=l 
s.t. Cw = IDEM (lIb) 

where we introduced the extended quantities: 

The augmented Lagrangian of the constrained problem (lla)-(llb) 

is given by [16,24]: 

1 
N 

f(W,A) = "2 LlE(dk(i)-Uk,iWd+ATCW+�IICwI12 (13) 
k=l 

where A E IREMX1 is the Lagrange multiplier vector: it consists of 
E subvectors, A = col {Ae}, each of size M x 1 for e = 1,2, ... , E. 
One subvector Ae is associated with each edge e. Notice that the ma­
trix CT C is in fact the Laplacian matrix of the network [23]. It is 
now possible to seek a saddle-point of (13) by employing a stochas­
tic approximation version of the first-order augmented Lagrangian 
algorithm [16, pp. 240-242] [17, p. 456]. The implementation relies 
on a stochastic gradient descent step with respect to the primal vari­
able, w, and a gradient ascent step with respect to the dual variable, 
A, as follows: 

{ Wi = Wi-l - f-LV::;J(Wi-l, Ai-I) 
Ai = Ai-l + f-L'\1;.J(Wi-l, Ai-I) 

(l4a) 

(14b) 

Observe that we are using an approximate gradient vector in (14a) 
and the exact gradient vector in (14b); this is because differentiation 
relative to w requires knowledge of the data statistics, which are not 
available. These gradient vectors are evaluated as follows: 

- T T '\1wf(w, A) = hi + C A + 1]C Cw 
'\1\f(W,A) =Cw 

(l5a) 

(I5b) 

where the vector hi amounts to an instantaneous approximation for 
the gradient vector of the first term on the right-hand side of (13); 
its k-th entry is given by -Uk,i(dk(i) - Uk,iWk). Observe that 
(15a)-(15b) can also be written in the following form: 

E 
'l/Jk,i-l = Wk,i-l-f-L LCekAe,i-l-f-L1] L IkfWf,i-l (l6a) 

e=l fE.f\!k 
Wk,i = 'l/Jk,i-l +f-LUk,i(dk(i)-Uk,iWk,i-l) (l6b) 

Ae,i = Ae,i-l + f-L(Wk,i-l - Wf,i-l) [£> k,£ENk] (l6c) 

where either node connected to edge e may update Ae,i-l. 
When 1] = ° in (13), (14a), and (16a), we obtain the distributed 

Arrow-Hurwicz (AH) method, also considered in [25, 26] for the 
solution of saddle point problems for other cost functions. Refer­
ence [25] considers problems that arise in the context of reinforce­
ment learning in response to target policies, while reference [26] 
considers regret analysis problems and employs decaying step-sizes 
rather than continuous adaptation. Moreover, in contrast to [12], the 
derived AL and AH implementations do not require the availability 
of special bridge nodes alongside the regular nodes. 

4. MAIN RESULTS 

In this section, we summarize the main results. Proofs are omitted 
due to space limitations - see [27]. 

4.1. Error Dynamics 

We know that the optimizer of (lla)-(llb) is Wk = WO for all 
k = 1, ... , N, where WO was defined in (1) since (lla)-(llb) is 
equivalent to (4). We introduce the error vector at each agent k, 
Wk,i = WO - Wk,i, and collect all errors from across the network 
into the block column vector: 

(17) 

We also introduce the singular-value-decomposition: 

C = U8V T (18) 

where U E IREXE and V E IRNXN are orthogonal matrices and 
8 E IRExN is partitioned according to 

8 _ [ 82 
- °CE-N+l)XCN-l) 

(19) 

where the square diagonal matrix 82 E IRCN-1)xCN-l) contains the 
nonzero singular values of C along its main diagonal and is therefore 
non-singular. We also partition V into: 

V= [V2 JNllN ] (20) 

It is then possible to establish the following result: 

Lemma 1 (Error dynamics of primal-dual strategies). Let the net­
work be connected. Then, the error dynamics of the primal-dual AH 
and AL algorithms (16a)-(l6c) evolve over time as follows: 

-I Wl,i-l 
-I ':::'2,i-l (21) 

A�,i-l 
where 

13; £ lC2N-1)M - f-LR; 
vI 1£i V2 + 1]sI S2 

V61£iV2 ,.., Ii:;. 
''-', -

VI1£iVa 
V61£iVa 

(22) 

sI 
OMx N-l M 

°CN-l)MXM 
(23) 

(24) 

andU = U 0 1M, S2 = 820 1M, V = V 0 1M, V2 = V2 01M, 
Va = JNllN 0 1M, and 

Zi £ col{ Ul,iVl(i), ... UN,iVN(i)} (25) 

1£i £ blockdiag{ Ui,iU1,i, ... , UJ",iUN,;} (26) 

where we denote the first (N - l)M elements of>'; by >'�,i while 
the remaining elements are collected into the vector >'; ,i' Similarly, 
the first (N - l)M elements of the vector w; are denoted by w� i 
while the remaining M elements are denoted by w; i. .. 
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4.2. Stability Results 

Using the error-recursion (21), we can establish the following state­
ment regarding mean stability (lEwk,i -+ 0) and mean-square-error 
stability (lEllwk,iI12 tends to a small bounded region). 

Theorem 1 (Stability of the AL algorithm). Under (3) and over 
connected networks, there exists fI such that for all rJ > fI, the matrix 
1{ + rJ . CT C is positive-definite and the AL algorithm is mean and 
mean-square stable for small /1>. • 

We conclude from Theorem I that the AL algorithm can be guar­

anteed to be stable for large enough rJ and small enough /1>. Observe 
that Theorem 1 may not apply to the AH algorithm since for that 
algorithm stability must be guaranteed for rJ = O. For such a case, 
we can obtain the following stability guarantee. 

Theorem 2 (Stability of the AL and AH algorithms). Assume that 
Ru,k > 0 for all k and let the network be connected. Then, the AL 
and AH algorithms are mean and mean-square stable for small /1> . •  

Observe that Theorem 2 does not apply to the partial observa­
tion model (3) since it requires each covariance matrix to satisfy 
Ru,k > O. In fact, there are cases where the AH is not stable under 
the partial observation model while the AL algorithm can be made 
to converge for large enough Tj [27]. Another aspect we need to con­
sider is how the stability range of /1> depends on the regularization 
parameter Tj and the network topology. It is already known that the 
mean stability range for diffusion strategies (9) is independent of the 
network topology [21]. We can also obtain the required step-size 
range for convergence of the AL algorithm for large values of Tj. 
Theorem 3. Let the network be connected and let Ru,k = Ru > 0 
for all k. Then, for large Tj > 0, we have that the step-size range to 
guarantee mean stability of the AL algorithm is 

2 /1> 
< -Tj-' -p("'-:C=T'""'C"" ) (27) 

where C is the incidence matrix of the network topology and 
p( C T C) denotes the spectral radius of C T C. • 

Clearly, as Tj -+ 00, the upper-bound on the step-size approaches 
zero. This means that the algorithm is sensitive to both the regular­
ization parameter rJ and the topology (through p( C T C). 

4.3. Mean-Square-Error Performance 

Let 1{ � blockdiag{ Ru,l, ... ,Ru,N }, then we have the following. 

Theorem 4 (MSD performance of AH algorithm). Assuming each 
Ru,k is positive-definite and the network is connected, the network 
MSD for the AH algorithm for small step-sizes is given by: 

M I N 2 2 MSD = W''2 N LCTv,k + 0(/1> ) 
k=l 

(2S) 

• 

Expression (2S) is equal to the average performance across a collec­
tion of N non-cooperative agents (see, e.g., [14,21]). In this way, 
Theorem 4 is a surprising result for the AH algorithm since even with 
cooperation, the network is unable to improve over non-cooperation. 
This result does not carry over to the AL algorithm. 
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Fig. 1. Simulation result for diffusion, consensus, AH, and AL. 

Theorem 5 (MSD performance of AL algorithm). Assume that the 
matrix 1{ + Tj . CT C is positive-definite (guaranteed by Theorem 1). 
Then, for sufficiently small step-sizes, the network MSD for the AL 
algorithm for large Tj is given by 

MSD = ; n ((�Ru'kr
l
(�CT�'kRu'k ))+ 

2� Tjn (Rz(CTC)t )+0 (� Tj)+0(/1>2) (29) 

where (CT C)t denotes the pseudoinverse ofCT C. • 

By examining (29), we learn that the performance of the AL 
algorithm for large Tj approaches the performance of the diffusion 
strategy given by (Sb). However, recalling the fact that the step­
size range required for convergence, under the large Tj regime and 
the assumption that Ru,l = ... = Ru,N = Ru > 0 in (27), is 
inversely proportional to Tj, we conclude that the AL algorithm can 
only approach the performance of the diffusion strategy as /1> -+ 0 
and Tj -+ 00. In addition, the performance of the AL algorithm 
depends explicitly on the network topology through the matrix CT C. 
Observe that this is not the case in (Sb) for the primal strategies. 
Thus, even for large rJ, AL is sensitive to the network topology. 

5. SIMULATION 

Consider a network of N = 20 agents and M = 5. We generate 
a positive-definite matrix Ru > 0 with eigenvalues 1 + Xm, where 
Xm is a uniform random variable. We let 1{ = IN 0 Ru with 
/1> = 0.01, which allows all algorithms to converge. The diffusion 
and consensus strategies utilize a doubly-stochastic matrix generated 
through the Metropolis rule [4]. We note that the diffusion and con­
sensus algorithms can improve their MSD performance by designing 
the combination matrix based on the Hastings rule [2S,29], but we 
assume that the nodes are noise-variance agnostic. For (14a)-(14b), 
we simulate three values of Tj: 0, 0.2, and 2. This will allow us to val­
idate our analysis results where an increase in Tj yields improvement 
in the MSD (Theorem 5). We observe in Fig. 1 that as Tj is increased, 
the performance of the AL algorithm improves, but is still worse than 
that of the consensus algorithm (7a)-(7b) and the diffusion strategy 
(5a)-(5b). Furthermore, the convergence rate of the AH algorithm 
is worse than that of non-cooperation, even though both algorithms 
achieve the same MSD performance. It is possible to further increase 
rJ in order to make the performance of the AL algorithm match bet­
ter with that of the consensus and diffusion strategies. However, it is 
important to note that if Tj is increased too much, the algorithm will 
diverge (recall (27». 
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