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ABSTRACT

In this paper, we examine the learning mechanism of adaptive agents
over weakly-connected graphs and reveal an interesting behavior on
how information flows through such topologies. The results clarify
how asymmetries in the exchange of data can mask local information
at certain agents and make them totally dependent on other agents. A
leader-follower relationship develops with the performance of some
agents being fully determined by other agents that can even be out-
side their immediate domain of influence. This scenario can arise,
for example, from intruder attacks by malicious agents or from fail-
ures by some critical links. The findings in this work help explain
why strong-connectivity of the network topology, adaptation of the
combination weights, and clustering of agents are important ingre-
dients to equalize the learning abilities of all agents against such
disturbances. The results also clarify how weak-connectivity can be
helpful in reducing the effect of outlier data on learning performance.

Index Terms— Weakly-connected graphs, distributed strate-
gies, Pareto optimality, leader-follower relationship.

1. INTRODUCTION AND RELATED WORK

Consider a network consisting ofN agents connected by a topology.
We assign a pair of nonnegative weights, {ak`, a`k}, to the edge
connecting any two agents k and `. The scalar a`k is used by agent
k to scale the data it receives from agent ` and similarly for ak`. The
network is said to be connected if paths with nonzero scaling weights
can be found linking any two distinct agents in both directions. The
network is said to be strongly–connected if it is connected with at
least one self-loop, meaning that akk > 0 for some agent k [1–3].

For each agent k, the combination coefficients are assumed to
satisfy:

a`k ≥ 0,
∑
`∈Nk

a`k = 1, a`k = 0 if ` /∈ Nk (1)

where Nk denotes the set of neighbors of agent k. We collect the
coefficients {a`k} into anN×N matrixA = [a`k]. Then, condition
(1) implies that A satisfies AT1 = 1, so that A is a left-stochastic
matrix. Additionally, the strong connectivity of the network implies
thatA is a primitive matrix (see Lemma 6.1 from [1] or Lemma 8.5.4
from [4]). It then follows from the Perron-Frobenius Theorem [4, 5]
thatAwill have a single eigenvalue at one, with all other eigenvalues
lying strictly inside the unit circle. Moreover, if we let p denote the
right-eigenvector of A corresponding to its single eigenvalue at one,
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and normalize its entries to add up to one, then all entries of p will
be strictly positive, meaning that p satisfies:

Ap = p, 1
Tp = 1, p � 0 (2)

We refer to p as the Perron eigenvector of A.
We associate with each agent k a twice-differentiable and con-

vex cost function, denoted by Jk(w) ∈ R, with independent variable
w ∈ RM . We assume at least one of these costs is strongly-convex.
The agents are assumed to run a collaborative distributed strategy of
the consensus [6–8] or diffusion type [1–3]. It is sufficient for our
purposes in this work to illustrate the results by using the following
adapt-then-combine (ATC) diffusion form [1]:

ψk,i = wk,i−1 − µk ∇̂wTJk(wk,i−1) (3)

wk,i =
∑
`∈Nk

a`k ψ`,i (4)

where µk > 0 is the step-size used by agent k, the vectors
{ψk,i,wk,i} denote iterates at agent k at time i, and the quan-

tity ∇̂wJk(wk,i−1) denotes an approximation for the true gradient
vector of Jk(w). The difference between the approximate and true
gradient vectors is called gradient noise. We represent the step-sizes
as scaled multiples of the same factor µmax, namely, µk = τkµmax

with 0 < τk ≤ 1. We also define the vector q = diag{µk} · p, with
entries qk, and introduce the strongly-convex weighted aggregate
cost:

Jglob,?(w)
∆
=

N∑
k=1

qkJk(w) (5)

We denote its unique minimizer by w? and the error at each agent
relative to w? by w̃k,i = w? − wk,i. It was shown in [1, 9] that
w? serves as a Pareto optimal solution for the network. Specifically,
under some reasonable conditions on the cost functions and the gra-
dient noise process, it holds that (see Theoream 9.1 of [1]):

lim sup
i→∞

E ‖w̃k,i‖2 = O(µmax) (6)

where the notation α = O(µ) means |α| < c|µ| for some constant
c > 0. Furthermore, if we let MSDk denote the size of the mean-
square deviation, E ‖w̃k,i‖2, in steady-state to first-order in µmax,
and let MSDav denote the average MSD value across all N agents,
then it was also shown in [1,9] that these measures are given by (see
Lemma 11.3 of [1]):

MSDk = MSDav =
1

2
Tr

( N∑
k=1

qkHk

)−1( N∑
k=1

q2
kGk

) (7)
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where the matrix quantities {Hk, Gk} correspond to the Hessian
matrix of the cost function and to the covariance matrix of the gradi-
ent noise process, respectively, at agent k:

Hk
∆
= ∇2

w Jk(w?) (8)

Gk
∆
= lim

i→∞
E
[
sk,i(w

?)sTk,i(w
?) |F i−1

]
(9)

and sk,i denotes the gradient noise process defined as

sk,i(wi−1)
∆
= ∇̂wTJk(wi−1) − ∇wTJk(wi−1) (10)

In (9), the symbol F i−1 denotes the filtration corresponding to all
past iterates {w`,j , j ≤ i− 1} across all agents ` = 1, 2, . . . , N .

2. WEAKLY-CONNECTED NETWORKS

We now examine how these results are modified for weakly-
connected networks. In doing so, some interesting patterns of
behavior are revealed. In loose terms, weakly-connected topologies
consist of collections of sub-networks with information flowing only
in one direction among some of them. This scenario does not only
arise as the result of intruder attacks or asymmetric information ex-
changes, but can also be the result of failures by some critical links
that render the network topology weakly-connected. Among other
applications, such networks can be used to model stubborn agent
behavior or authoritarian behavior over social networks [10, 11].
Figure 1 illustrates one particular example consisting of three sub-
networks, with the number of their agents being denoted by N1, N2,
and N3.

Fig. 1. Illustration of a weakly connected network consisting of
three sub-networks.

In the figure, each of the two top sub-networks is strongly-
connected and does not receive information from any other sub-
network (self-loops are not indicated in the figure). Each of
these sub-networks has its own combination policy, denoted by

{A1 ∈ RN1×N1 , A2 ∈ RN2×N2}, and its own Perron vector, now
denoted by {p1, p2}. Therefore, if each of these sub-networks were
to run the diffusion strategy (3)–(4), then each one of them will
independently converge in the mean-square-error sense towards its
own Pareto solution, denoted by {w?

1 , w
?
2}. The same figure shows a

third sub-network in the bottom, and which appears at the receiving
end relative to the other sub-networks. The figure shows two arrows
emanating in one direction from the top sub-networks towards the
bottom sub-network. Therefore, this third sub-network is influenced
by the behavior of the top sub-networks, while it does not feed any
information back to them. We would like to examine whether the
limiting behavior of this third sub-network is ultimately dictated by
the two top sub-networks or whether it can still exhibit independent
behavior based on its own local data.

More generally, consider a network consisting of a collection of
S stand-alone strongly-connected sub-networks. Each of these sub-
networks does not receive information from any other sub-network
and they can therefore run their diffusion strategies independently of
the other sub-networks. We further assume that the network contains
a second collection of R sub-networks where some agents in these
sub-networks receive information from agents in the first collection.
If we refer to Figure 1, then S = 2 and R = 1. The total number of
agents in the network is still denoted by N and it is equal to the sum
of the number of agents across all sub-networks.1

We collect all weighting coefficients {a`k} from across all edges
into a large N ×N combination matrix A = [a`k]. Without loss of
generality, we assume the agents are numbered with the agents from
the union of all S strongly-connected sub-networks coming first, fol-
lowed by the agents from the remaining R sub-networks. In this
way, the matrix A will exhibit the following upper block-triangular
structure (if A is not in this irreducible form, then a permutation
transformation of the form PTAP can transform A into the desired
form [13, Ch. 8]):

Subnetworks:1,2,...,S︷ ︸︸ ︷ Subnetworks:S+1,S+2,...,S+R︷ ︸︸ ︷

A1 0 . . . 0 A1,S+1 A1,S+2 . . . A1,S+R

0 A2 . . . 0 A2,S+1 A2,S+2 . . . A2,S+R

...
...

. . .
...

...
...

. . .
...

0 0 . . . AS AS,S+1 AS,S+2 . . . AS,S+R

0 0 . . . 0 AS+1 AS+1,S+2 . . . AS+1,S+R

0 0 . . . 0 0 AS+2 . . . AS+2,S+R

...
...

. . .
...

...
...

. . .
...

0 0 . . . 0 0 0 . . . AS+R


(11)

In the above expression, the matrices {A1, . . . , AS} are the left-
stochastic primitive matrices corresponding to the S strongly-
connected sub-networks. We denote the size of each matrix As

by Ns. Likewise, the matrices {AS+1, . . . , AS+R} in the lower
right-most block contain the internal combination coefficients for

1We remark that our definition of weakly-connected networks is more
strict than the terminology used in graph theory. There, a directed graph is
called weakly-connected if replacing all of its directed edges with undirected
edges produces a connected (undirected) graph [12]. This definition would
also include strongly-connected networks as special cases. Our definition
is meant to focus exclusively on networks that are truly weakly-connected
in that they induce an asymmetric flow of information among some of its
components.
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the R collection of sub-networks. For example, AS+1 contains the
coefficients that appear on the edges within sub-network S + 1; this
matrix is not left-stochastic because it does not contain all the com-
bination coefficients that are used by the agents within sub-network
S + 1. The entries in the right-most upper block of A contain the
combination weights for the edges that emanate from the S sub-
networks towards theR sub-networks. For example, for the network
shown in Figure 2, one possibility for the combination matrix A is:

A =



0.2 0.2 0.8 0 0 0 0 0
0.5 0.4 0.1 0 0 0.2 0 0.4
0.3 0.4 0.1 0 0 0.1 0 0
0 0 0 0.4 0.3 0.3 0 0
0 0 0 0.6 0.7 0 0 0

0 0 0 0 0 0.2 0.3 0.2
0 0 0 0 0 0.1 0.5 0.3
0 0 0 0 0 0.1 0.2 0.1


(12)

Fig. 2. A weakly connected network consisting of three sub-
networks and the corresponding combination policy (12).

3. STEADY-STATE DYNAMICS

This section summarizes the main results that characterize the learn-
ing process over weakly-connected networks. Proofs are omitted
due to space limitations. We first need to examine the limit of An as
n→∞, for matrices A that have the irreducible structure (11). We
denote the block structure of A from (11) by

A
∆
=

[
TSS TSR

0 TRR

]
(13)

where, for example, TSS is block diagonal and consists of the left-
stochastic and primitive entries {A1, A2, . . . , As}, while TRR is
block upper triangular when R > 1 or full matrix when R = 1 .
The block TSR represents the influence of the S sub-networks on the
R sub-networks.

Lemma 1 (LIMITING POWER OF A) Let the Perron eigenvec-
tors of the S strongly-connected sub-networks be denoted by
{ps, s = 1, 2, . . . , S}. It then holds that:

A∞
4
= lim

n→∞
An =

[
Θ ΘW

0 0

]
(14)

where the matrices Θ and W are defined by

W
∆
= TSR(I − TRR)−1 (15)

Θ
∆
= blockdiag

{
p11

T
N1
, . . . , pS1

T
NS

}
(16)

�

The factor W that appears on the right-hand side of (14) is a left-
stochastic matrix and admits the following useful interpretation. It
can be shown that TRR is a stable matrix and, hence, we can write

W = TSR + TSRTRR + TSRT
2
RR + . . . (17)

Now note that the first term in (17) represents the information that
is transferred from group S into group R, while the second term in
(17) represents how this information is transformed internally within
groupR after one step, and similarly for the subsequent terms in (17)
involving higher-order powers of TRR.

3.1. Limit Points for Group S of Sub-Networks

Let {w?
s , s = 1, 2, . . . , S} denote the Pareto optimal solutions

for the strongly-connected sub-networks in group S. Consider sub-
network s from this group. It has Ns agents and its agents’ step-
sizes will be denoted by {µs,k}, with the first subscript referring
to the sub-network and the second subscript referring to the agent.
Likewise, the Perron vector of sub-network s is denoted by ps with
individual entries {ps,k}. The associated scaled weights are denoted
by:

qs,k
∆
= µs,kps,k, k = 1, 2, . . . , Ns (18)

Now, the Pareto solution, w?
s , that corresponds to sub-network s is

the unique solution to the following algebraic equation:

Ns∑
k=1

qs,k∇wTJs,k(w?
s) = 0 (19)

where the {Js,k(w)} denote the cost functions that are associated
with the agents k within sub-network s. Each agent in the sub-
network s will converge towards w?

s within O(µmax). In other
words, the limit point will be uniform within each sub-network;
though the limit points can be distinct across the sub-networks. Col-
lecting the Pareto solutions {w?

s} from across the S sub-networks,
we find that the limiting points for all agents within group S are
described by the following extended vector:

W
? ∆

= col{1N1 ⊗ w
?
1 , . . . , 1Ns ⊗ w

?
S} (20)

where notation 1N1 means all-one-vector with length N1, and nota-
tion ⊗ represents the kronecker product.

3.2. Limit Points for Group R of Sub-Networks

Now consider an arbitrary sub-network r from group R. It turns
out that, contrary to the uniform behavior observed for group S,
each agent within the sub-network r will converge to an individ-
ual limit point and the values of these points are determined by the
sub-networks in group S (as shown below by (23)).

We denote the limiting value for each agent k in sub-network r
by w•r,k, for k = 1, 2, . . . , Nr . In this way, the collection of limit
points for each sub-network r will be

W
•
r = col{w•r,1, . . . , w•r,Nr

} (sub-network r) (21)
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and the collection of limit points for all R sub-networks is

W
• ∆

= col{W•1, W•2, . . . ,W•R} (22)

We can identify the limit vectorW• for the sub-networks from group
R in terms of the Pareto solutions of the sub-networks from group
S. The argument is omitted but the key result is that it will hold that:

W
• =WT

W
? (23)

whereW = W⊗IM . Recall thatW is left-stochastic, which implies
that if all S sub-networks happen to have the same limit point, say,
w?, then all agents in group R will also converge to this same limit
point. More generally, if sub-networks within group S have different
limit points, w?

s , then each agent in group R will usually converge
towards a different limit point, w•r,k. We can assess the steady-state
mean-square deviation for each agent, defined as the value of the
error variance relative to its limit point, E ‖w̃k,i‖2, as i → ∞ and
for sufficiently small step-sizes. For agents in groupR, we introduce
the S × 1 column vector:

ck = blockdiag{1T
N1
, 1T

N2
, . . . , 1T

NS
} · [W ]:,k (24)

where the notation [W ]:,k refers to the column of W corresponding
to agent k. Recall that W is a left-stochastic matrix and, therefore,
the entries of ck will add up to one. In addition, as expression (26)
below reveals, the square of the s−th entry of ck will measure the in-
fluence of sub-network s from group S on the performance of agent
k from group R.

Theorem 1 (MSD PERFORMANCE) Assume agent k belongs to a
sub-network s from group S. Then, all agents within sub-network s
achieve the same MSD level given by

MSDs =
1

2
Tr

( Ns∑
k=1

qs,kHs,k

)−1( Ns∑
k=1

q2
s,kGs,k

) (25)

where we are using the notation {Hs,k, Gs,k}, with a subscript s,
to denote the Hessian and covariance matrices (8)–(9) for agent k
within sub-network s. Assume, on the other hand, that agent k be-
longs to a sub-network r from group R. Then, in this case, it holds
that

MSDk =
S∑

s=1

c2k(s) ·MSDs (26)

where ck(s) denotes the s−th entry of vector ck. That is, the perfor-
mance of any agent from groupR is given by a weighted combination
of the MSD performance levels of the sub-networks from group S.

�

In conclusion, the findings established in this article help explain
why strong-connectivity of the network topology [1,2] adaptation of
the combination weights [1, 3] and clustering of agents [14–16] are
important ingredients to safeguard against such pitfalls. The results
also clarify how weak-connectivity is helpful in reducing the effect
of outlier data when all agents in a network are interested in the same
objective, as illustrated next.

4. APPLICATION EXAMPLE

We consider an example based on the topology from Fig. 2 to illus-
trate that a weakly-connected network can sometimes achieve better
performance than strongly-connected networks in the presence of
outliers in the data. The objective is to determine an elliptical curve
that separates the data into two classes: class +1 consists of data that
are concentrated inside the curve and class -1 consists of data that
are concentrated outside the curve. We assume about 10% of the
data available to sub-networks R are outliers. The outlier data be-
long to class +1 but are located away from origin. Obviously, since
we are dealing with a weakly-connected network, agents in group S
will not be affected by these outliers.

We assume each agent employs the logistic cost function:

Jk(w) = ρ‖w‖2 + E
{

ln[1 + e−γkh
T
kw]
}

(27)

where γk represents the class label {+1,−1}, ρ is a regularization
parameter, and the feature vector hk is chosen as follows in terms of
the (x,y) coordinates of each data point [17, 18]:

hk(1) = 1, hk(2) = x, hk(3) = y

hk(4) = x2, hk(5) = y2, hk(6) = xy

The gradient vector of Jk(w)is approximated by using

∇̂wTJk(wk,i−1) =
− γk(i)hk,i

1 + e
γk(i)hT

k,i
wk,i−1

+ ρwk,i−1 (28)

We compare the performance of the weakly-connected topology
against a strongly-connected (actually, fully-connected) network
with combination matrix: A = 1

8
181

T
8 . In Fig. 3, we observe that

the black elliptic curve, which is the result obtained by the strongly-
connected network, is larger than the green elliptic curve obtained by
the weakly-connected network. Comparing both boundary curves,
we find that the black curve includes a larger proportion of class -1
data, which will be mistakenly inferred as belonging to class +1.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2
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0

0.5

1

1.5

2

x

y

Agent R classification result

 

 

class +1

class −1

outlier

Strongly−Connected Result Weakly−Connected Result

Fig. 3. Logistic classification result using an elliptic separation
curve. In the simulation, sub-networks R suffer from outlier data.
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