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ABSTRACT

In distributed inference, local cooperation among network
nodes can be exploited to enhance the performance of each
individual agent, but a challenging requirement for networks
operating in dynamic real-world environments is that of adap-
tation. The interplay between these two fundamental aspects
of cooperation and adaptation has been investigated in recent
years in the context of estimation problems. Less explored
in the literature is the case of detection, which is our focus.
Capitalizing on the powerful tool of large deviations analysis,
we show how to design and characterize the performance of
diffusion strategies that reconcile both needs of adaptation
and detection in decentralized systems.

1. MOTIVATION

Enabling continuous learning and adaptation over distributed
networks engaged in inferential tasks is critical for the suc-
cessful operation of decentralized solutions under dynami-
cally changing conditions. In this work, we show how this
objective can be achieved by means of diffusion strategies
and, more importantly, we pursue a large deviations analysis
to establish that the proposed structure leads to an exponen-
tial decay in the probability of error. We characterize this rate
of decay by deriving a closed form expression for the steady-
state error exponent.

We thus consider a collection of .S agents that are assumed
to monitor a certain phenomenon of interest. As time elapses,
the nodes collect an increasing amount of data, whose statis-
tical properties depend upon an unknown state of nature, for-
mally represented by the hypotheses Ho and H;. At each time
instant, each sensor must make a decision, based on its local
observations and on the information exchanged with neigh-
boring nodes. We emphasize the need for adaptation since in
the assumed model, the true hypothesis may drift over time,
and the network must be able to react to this situation. This
scenario is illustrated in Fig. 1, where we show the simulated
time-evolution of the error probabilities achieved by certain
agents of the network (three nodes out of ten), for different
distributed strategies. We show in the lower part of the fig-
ure that the true (unknown) hypothesis changes at certain (un-
known) epochs following the pattern Hg — H1 — Ho. The
error probabilities corresponding to the different strategies
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Fig. 1. Adaptive diffusion algorithms at work. The network shown in the
inset plot is engaged in a detection problem. Top panel: time-evolution of the
error probability at three nodes with ) the diffusion strategy with different
step-sizes u = 0.025, 0.05, and 4¢) the running consensus strategy (decaying
step-size pn = 1/n). Bottom panel: Actual pattern of the true hypothesis.

show different degrees of adaptation, quantifiable in terms of
the delay needed for identifying a change in the state of na-
ture. The simulation shows the learning curves for two adap-
tive diffusion implementations [1-3] with constant step-sizes
and one adaptive running consensus implementation with a
decaying [4-9] step-size sequence of the form p,, = 1/n,
where n is the time index. It is seen that this latter case is not
apt at tracking drifts in the underlying state of nature. This in-
ability to track drifts degrades further as time progresses since
the step-size sequence i, = 1/n decays to zero as n — oo.
For this reason, in this work, we shall set the step-sizes to con-
stant values to enable continuous adaptation and learning by
the distributed network of detectors. In order to evaluate how
well these adaptive networks perform, we need to be able to
assess the goodness of the inference performance (reliability
of the decisions), so as to exploit the trade-off between adap-
tation and learning capabilities. This is the main theme of the

paper.

2. SUMMARY OF MAIN RESULTS

Recent literature on the subject focuses on the detection per-
formance of decentralized consensus algorithms with decay-



ing step-size [4-9]. For the case of constant step-size, while
several results have been obtained for the mean-square-error
(MSE) estimation performance of adaptive networks [1, 10],
less is known about the performance of distributed detection
networks (see, e.g., [11]). This is mainly due to the fact that
results on the asymptotic distribution of the error quantities
under constant step-size adaptation over networks are largely
unavailable in the literature. While [12] argues that the error
in single-agent LMS adaptation converges in distribution, the
resulting distribution is not characterized. Only recently these
questions have been studied in [13, 14] in the context of dis-
tributed estimation. Nevertheless, these results on the asymp-
totic distribution of the errors are still insufficient to character-
ize the rate of decay of the probability of error over distributed
networks. To do so, it is necessary to pursue a large deviations
analysis in the constant step-size regime. Motivated by these
remarks, we therefore provide a thorough statistical charac-
terization of the diffusion network in a manner that enables
detector design and analysis.

The main result established in this paper can be summa-
rized by the following formulas:

e A O

where oy, and Sy, represent the Type-I (false-alarm) and
Type-II (miss-detection) error probabilities at the k-th sensor,
corresponding to the steady-state (i.e., n — o0) output of
the distributed diffusion strategy with constant step-size .
The notation = in (1) means equality to the first-order in the
exponent as j goes to zero. Moreover, the factors & and &;
are functions of the moment generating function of the single-
sensor data, and of the decision regions; they are independent
of the step-size, the number of sensors .S, and the network
connectivity.

Result (1) has several insightful ramifications. At a fun-
damental level, Eq. (1) reveals that the error probabilities are
driven to zero exponentially fast as functions of 1/, and that
the error exponents governing this decay increase linearly in
the number of sensors. It is instructive to compare this de-
tection scaling law to the already known results for adaptive
distributed estimation over diffusion networks, which state
that the MSE attained by sensor k obeys [1, 10]: MSE;
w/S. Thus, the scaling laws governing errors of detection
and estimation over diffusion networks behave very differ-
ently, the former being exponential with decay proportional
to 1/u, while the latter is linear with decay proportional to
. This reveals an interesting analogy with other more tradi-
tional inferential schemes, such as, for example, (a) the cen-
tralized, non-adaptive inferential system with N independent
and identically distributed (i.i.d.) data points [15, 16], where
error probabilities vanish exponentially fast as functions of IV,
and the MSE decays as 1/N; and (b) the case of multiterminal
inference with bit-rate R [17], where error probabilities van-
ish exponentially fast as functions of R, and the MSE decays
as 1/R. The step-size u emerges thus as the basic parameter
quantifying the cost of the information used by the network
for inference purposes, much as the number of data NV or the
bit-rate R in the considered examples.

On a more practical level, Eq. (1) characterizes the asymp-
totic performance of each agent in the network, revealing in
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particular that: ¢) the inferential diffusion strategy equalizes
the detection performance of the agents, in the sense that the
error exponents do not depend on the particular sensor k; i%)
cooperation offers exponential gains in terms of detection per-
formance, as the error exponents increase linearly with S; i4)
the diffusion strategy performs asymptotically as well as the
centralized stochastic-gradient solution, because this latter is
equivalent to a fully connected case [1, 18]. We now move on
to describe the adaptive distributed solution and to establish
its main property (1). Throughout the paper, we use boldface
letters to denote random variables, and normal font letters for
their realizations. Capital letters refer to matrices, small let-
ters to both vectors and scalars. Exceptions to these rules will
be obvious from the context.

3. PROBLEM SETUP

The scalar observation collected by the k-th sensor at time n
is denoted by @(n), k = 1,...,S, and it arises from a dis-
tribution with mean Ex and variance o2. The data across the
sensors are assumed to be spatially and temporally i.i.d., con-
ditioned on the hypothesis. It is well-known that for the i.i.d.
model, an optimal centralized (and non-adaptive) detection
statistic is the sum of the log-likelihoods. When the latter are
not available, detection statistics obtained as a sum of some
suitably chosen functions of the observations are often em-
ployed as alternatives [19,20]. Accordingly, we assume that
xy(n) represents the local statistic that is available to sen-
sor k at time n. Given the objective of mimicking weighted
averages, we therefore resort to the class of diffusion strate-
gies for adaptation over networks [1-3, 11]. Among the vari-
ous forms, we consider the Adapt-then-Combine (ATC) form,
due to some inherent advantages in terms of MSE perfor-
mance [1,3]. In the ATC diffusion implementation, each node
k updates its state from yy (n — 1) to yx(n) through local co-
operation with its neighbors as follows:

re(n) = ye(n—1) + plzr(n) —yr(n —1)], (2
s

ye(n) = > areri(n). 3)
=1

In this construction, node k first uses its local statistic, x(n),
to update its state from yi(n — 1) to an intermediate value
ri(n). All other nodes in the network are performing simi-
lar updates simultaneously using their local statistics. Subse-
quently, node k aggregates the intermediate states of its neigh-
bors using nonnegative convex combination weights {ay ¢}
that add up to one. Again, all other nodes in the network per-
form a similar calculation. The above adaptation and aggrega-
tion steps can be combined into a single equation as follows:

S

Yi(n) =Y are(ye(n — 1)+ plze(n) —ye(n —1)]), @)
=1

where 0 < p < 1 is a small step-size parameter. If we col-
lect the combination coefficients into a matrix A = [ag.¢],
then A is right-stochastic satisfying A1 = 1, with 1 be-
ing a column-vector with all entries equal to one. Since we



are interested in reaching a balanced fusion of the observa-
tions, we further assume that A is doubly-stochastic with sec-
ond largest eigenvalue magnitude strictly less than one, which
yields A" "=3° 117/ [21,22].

At time n, the k-th sensor runs a decision algorithm based
upon yi (n), whose performance is measured according to the
Type-I and Type-II error probabilities:

ar(n) < Polyu(n) € T, Br(n) < Pily(n) € Tl
)
where Py [-], with h = 0,1, is the probability operator un-
der H;,, and the decision regions in favor of Hy and 7, are
denoted by I'g and I'y, respectively.

Computation of the exact distributions of yi(n) is gen-
erally intractable, implying that the structure of the test is
unknown. However, we are able to address this problem in
the slow adaptation regime for sufficiently small step-sizes.
In this case, we are able to show that (a) yx(n) has a limiting
distribution as n goes to infinity (Theorem 1); (b) the distribu-
tion of yi(n) approaches a Gaussian, i.e., it is asymptotically
normal (Theorem 2); (c) the large deviations of the steady-
state output yx(n) can be characterized (Theorem 3); and (d)
these findings are key for designing the distributed inference
system and characterizing its performance (Theorem 4). The
proofs of the theorems are omitted for space constraints, and
can be found in [24].

4. STEADY-STATE DISTRIBUTION

Let x, and y, denote the S x 1 vectors that collect, re-
spectively, the local statistics {@j(n)} and the state variables
{yr(n)} from across the network at time n. It is then straight-
forward to verify from the diffusion strategy (4) that the state
of the £—th sensor can be written as:

yr(n) = transient + sz(i), (6)
i=1
where
S
transient = (1 —p)"” Zbk,l(n)yé(())a (N
=1
. S
zi(i) = p(l—p)! Z bi,e(i)@e(n — i+ 1), (8)
=1

and the scalars by, ¢(n) are the entries of B(n) ) A7, The
rightmost term in (6) involves a sum of independent, but
not identically distributed, random variables. It is however
straightforward to verify that

E <i zk(i)> "3 Ex, VAR (i zk(i)> < @ < 0.

i=1 2—p

)]
In view of the Infinite Convolution Theorem [23, p. 266],
these two conditions are sufficient to establish that the second
term on the RHS of (6), i.e., the sum of the random variables

zi, (1), converges in distribution to a random variable y; , as
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n — o0, and that the first two moments of the limiting distri-
bution are equal to Ex and ;- | VAR(z(i)). Note that we
are making explicit the dependence of yf  on the step-size 1
for later use. Since the first term on the RHS of (6) vanishes
with n, by application of Slutsky’s Theorem [15] we have in
fact shown that, at the steady-state, the diffusion output yx(n)
is distributed as yj; ,. The above findings are summarized in
the following result (where the symbol ~~ means convergence
in distribution).

THEOREM 1: (Steady-state distribution of yi(n)). The state
variable yy,(n) that is generated by the diffusion strategy (4)
is asymptotically stable in distribution, namely,

n—oo 4

Yr(n) "~ Yi - (10)

O
So far we have only proved that a steady-state distribution for
yi(n) exists. While the exact form of the steady-state distri-
bution is generally impossible to evaluate, it is nevertheless
possible to approximate it well for small values of the step-
size parameter.

5. THE SMALL-i REGIME

We start by stating the following result (where A (a, ) de-
notes a Gaussian distribution with mean a and variance b).

THEOREM 2: (Asymptotic normality ofy,:# as i — 0). Un-
3

der the assumption E|xy(n)|® < oo, we have, for all k =

1,...,8:
M“C&ON(O,J—i). (11)
N 25
O
Theorem 2 provides an approximation of the diffusion out-
put distribution for small step-sizes. At first glance, this may
seem enough to approximate the detection error probabilities.
A closer inspection reveals that this is not the case. From The-
orem 2 we learn that, as ;& — 0, the diffusion output shrinks
down to its limiting expectation Ex and that the small (of or-
der ,/p) deviations around this value have a Gaussian shape.
Consider instead the evaluation of terms like

pn—0

Pllyj,, — Ex| > 8] “=50, §>0. (12)

While the above convergence to zero can be inferred from (11),
it is well known that (11) is not sufficient in general to char-
acterize the rate at which the probability vanishes. Assessing
the rate of convergence is critical for the accurate design and
characterization of reliable inference systems [25,26].

In order to fill this gap, the study of the large deviations of
Yy, 1s needed. We will be showing in the sequel that the pro-
cess yj; ., obeys a Large Deviation Principle (LDP), namely,
that the following limit exists [25, 26]:

igr%)u InPly; , € Il = — inf I(v), (13)

vel
for some I(+y) that is called rate function. We determine the
expression for I(-y) in Theorem 3. The above equation can be
equivalently rewritten as

Plyf,, €1 = e~ (/mher 100, (14)



which shows how the LDP generally implies an exponential
scaling law for probabilities, with an exponent governed by
the rate function. One basic ingredient of Theorem 3 is the
Girtner-Ellis Theorem [25,26], which is stated next in a form
that uses directly the set of assumptions relevant for our pur-
poses.

GARTNER-ELLIS THEOREM [25]. Let z,, be a family of ran-
dom variables with Logarithmic Moment Generating Func-
tion (LMGF) ¢,,(t) = InEexp{tz,}. If

o(t) < tim 11, (/) (1)

exists, with ¢(t) < oo for all t € R, and ¢(t) is differentiable
in R, then z,, satisfies the LDP property (13) with rate func-
tion given by the Fenchel-Legendre transform of ¢(t), namely,

(7)< suplyt - o(1)]. (16)
teR
O
We now show how the result allows deriving the asymptotic
performance of the diffusion output in our inferential net-
work. Let us introduce the LMGF of the data xx(n), and
that of the steady-state variable y; e respectively:

de de
b(t) Y mEexpltar(n)}, dru(t) Y mEexp{tyf,}.
A7)
Our main theorem about the large deviations of the diffusion
output is the following.

THEOREM 3: (Large deviations ofy,’;# as it — 0). Assume

that Y(t) < +oo Vt € R, and define w(t) def fot @dr
Then, forallk =1,...,S:

o(t) & tim i drp(t/p) = Swlt/S). (18)

Also, the steady-state variable y;’ L obeys the LDP with rate
Sfunction I(y) = S Q(7). O

6. ADAPTIVE DISTRIBUTED DETECTION

In view of Theorem 1, we consider the behavior of (5) as
n — 00, and write the steady-state detection performance
as follows (assuming that yj; ., lies on the boundaries of the
decision regions with probability zero [16,27]):

de * de *
e < Poly, €T1), By < Pilyf, €To), (19)

where the dependence upon p has been made explicit. The
large-deviations result offered by Theorem 3 can now be tai-
lored to our detection setup as follows.

THEOREM 4: (Detection error exponents). For h € {0,1},
let T'y, be the decision regions — independent of u — and as-

sume that Yy (t) < oo, for all t € R. Also, let wp(t) =
[3 D ar. Then, forallk = 1,..., S, Eq. (1) holds with:

5() = fylélff“l Q() (")/), 51 = 'ylélIf"g Ql(’}/) (20)

O
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Fig. 2. Shift-in-mean detection problem with Laplace noise. Here o = 1,
0 = 0.05, and the number of Monte Carlo runs is 105.

Let us now provide some tangible examples showing appli-
cations of Theorem 4. We assume that x(n) is the local
log-likelihood computed by the k-th sensor, and that a thresh-
old detector is employed with Tg = {v : v < n}. We
start with a classical Gaussian shift-in-mean problem where
the data arise from N(0,0?) under H, and from N'(0, o?)
under #,, with § > 0. The sensors compute the correspond-
ing log-likelihoods, which yields xx(n) ~ N (=D, 2D) un-
der Hy, and i (n) ~ N (D, 2D) under H, where D = %
is the Kullback-Leibler divergence between the two hypothe-
ses [16]. For this example, the rate functions can be found in
closed form by applying the recipe in Theorem 4, yielding:

(1 +D)’ (=D

Qo(v) = —p Q(y) = D

Setting the threshold 7 in the interval (—D, D) — a different
choice will otherwise nullify one of the exponents — the min-
imization in (20) is easily performed using convexity proper-
ties of the rate functions (21). The final result is:

2y

_D)2
e

o = e (/WS i . B ,
(22)
In order to test the theoretical findings we now present some
evidences arising from Monte Carlo simulations. The net-
work employed is made of ten sensors, arranged so as to
form the topology in the inset plot of Fig. 1, with combina-
tion weights ay ¢ following the Laplacian rule [21]. Going
beyond the Gaussian example, we consider a shift-in-mean
problem with double-exponential (Laplace) noise. The prob-
ability density functions of the data under Hy and H; are:

Lo h©=hE—0 @

fO (g) = 56_77
Each sensor computes the local log-likelihood xj(n), and
compares it to a threshold = 0. By symmetry arguments,

ok = Brp = p,(fL, and & = & “e m Fig. 2 we show

the empirical error exponents —u In pEjL, fork=1,2,...,85,
along with the average network performance. It is seen that,
in perfect agreement with Theorem 4, all sensors tend to reach
the theoretical exponent S x £ as the step-size y decreases.
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