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ABSTRACT
In this paper, we consider learning dictionary models over a network
of agents, where each agent is only in charge of a portion of the dic-
tionary elements. This formulation is relevant in big data scenarios
where multiple large dictionary models may be spread over different
spatial locations and it is not feasible to aggregate all dictionaries in
one location due to communication and privacy considerations. We
first show that the dual function of the inference problem is an aggre-
gation of individual cost functions associated with different agents,
which can then be minimized efficiently by means of diffusion strate-
gies. The collaborative inference step generates local error measures
that are used by the agents to update their dictionaries without the
need to share these dictionaries or even the coefficient models for
the training data. This is a useful property that leads to an efficient
distributed procedure for learning dictionaries over large networks.

Index Terms— Dictionary learning, distributed model, diffu-
sion strategies, dual decomposition.

1. INTRODUCTION AND RELATED WORK

Dictionary learning is a useful procedure by which dependencies
among input features can be represented in terms of suitable bases. It
has found applications in many machine learning and inference tasks
including image denoising [1,2], dimensionality-reduction [3,4], bi-
clustering [5], feature-extraction and classification [6], and novel
document detection [7]. Dictionary learning usually alternates be-
tween two steps: (i) an inference (sparse coding) step and (ii) a
dictionary update step. The first step finds a sparse representation
for the input data using the existing dictionary by solving an �1-
regularized regression problem, and the second step usually employs
gradient descent to update the dictionary entries.

With the increasing complexity of various learning tasks, it is
natural that the size of the learning dictionaries is becoming increas-
ingly demanding in terms of memory and computing requirements.
It is therefore important to study scenarios where the dictionary need
not be available in a single location but is instead spread out over
multiple locations. This is particularly true in big data scenarios
where multiple large dictionary models may be already available at
separate locations and it is not feasible to aggregate all dictionaries
in one location due to communication and privacy considerations.
This observation motivates us to examine how to learn a dictionary
model that is stored over a network of agents, where each agent is in
charge of only a portion of the dictionary elements. Compared with
other works, the problem we solve in this article is how to learn a
distributed dictionary model, which is, for example, different from
the useful work in [8] where it is assumed instead that each agent
maintains the entire dictionary model.

This work was supported in part by NSF grant CCF-1011918. Emails:
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In this paper, we will first formulate a modified version of the
sparse coding problem, where we add an additional �2 regulariza-
tion term besides the �1 term (also known as elastic net regulariza-
tion [3]). This modified problem is not in a form that is directly
amenable to a distributed implementation. However, we will show
that the modified problem has a dual function that can be solved in a
distributed manner using diffusion strategies [9–13]. Useful consen-
sus strategies [14, 15] can also be used. However, since it has been
noted that diffusion strategies have enhanced stability and learning
abilities over consensus strategies [16], we continue our presentation
by focusing on diffusion strategies.

The inference algorithm that we develop is fully distributed in
the sense that each agent only needs to apply a local gradient descent
step followed by an information exchange step of the dual variable
within its neighborhood. We will show that this dual variable has
a useful interpretation, namely, it corresponds to the representation
error for the input data sample relative to all dictionary elements.
Therefore, the agents do not need to share their (private) dictionary
elements but only this representation error, which is computed in a
distributed manner through local interactions. We test our algorithm
on a typical image denoising task. The dictionary is learned from a
collection of patches arising from natural scenes and the learned dic-
tionary is used to reconstruct a noisy image not included in the train-
ing set. The denoised image’s peak-signal-to-noise-ratio (PSNR) is
found to rival that of a centralized dictionary learning algorithm [2].
In other words, our results show that the distributed solution does
not limit performance. On the contrary, it can perform as well as a
fully centralized solution. This observation has useful ramifications
for dealing with large dictionaries and large data sets.

2. PROBLEM FORMULATION

We seek to solve the following global dictionary learning problem
over a network of N agents connected by a topology:

min
W

E

[
1

2
‖xt −Wyo

t ‖22 + γ‖yo
t ‖1 +

δ

2
‖yo

t ‖22
]

(1)

s.t. ‖wk‖22 ≤ 1, k = 1, . . . , N (2)

where Ex denotes the expectation operator, xt is the M × 1 input
data vector at time t (we use boldface letters to represent random
quantities), W is an M × N dictionary matrix, wk is the k-th col-
umn of W (also known as the k-th dictionary element, or atom),
γ and δ are positive regularization factors for the �1 and �2 terms,
respectively, and yo

t is the solution to the following sparse coding
problem for each input data sample xt at time t (the regular font xt
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denotes a realization for xt):

yo
t = argmin

y

[
1

2
‖xt −Wy‖22 + γ‖y‖1 + δ

2
‖y‖22

]
︸ ︷︷ ︸

�Q(W,y;xt)

(3)

Note that dictionary learning consists of two steps: the sparse coding
step (inference) for the realization xt at each time t in (3), and the
dictionary update step (learning) in (1)–(2). Let yk denote the k-th
entry of the N × 1 vector y. Then, the objective function of the
inference step (3) can be written as

Q(W, y;xt) �
1

2

∥∥∥∥xt−
N∑

k=1

wkyk

∥∥∥∥2

2

+

N∑
k=1

(
γ · |yk|+

δ

2
·y2

k

)
(4)

The dictionary elements {wk} are linearly combined to represent
each input data sample, and the first term in the cost function (4) re-
quires the representation error to be small. In this paper, we focus on
using quadratic costs to measure the representation error. In [17], we
generalize the results to any differentiable strictly convex costs. The
second and third terms in (4), which correspond to the �1 and �2 reg-
ularizations in (3), are meant to ensure that the resulting combination
coefficients {yk} are sparse and small. The �2 term makes the reg-
ularization strongly convex, which will allow us to develop a fully
decentralized strategy that enables the dictionary elements {wk} and
the corresponding coefficients {yk} to be stored and learned in a
distributed manner over the network. That is, each agent k will in-
fer its own yk and update its own dictionary element, wk, by rely-
ing solely on limited interactions with its neighboring agents. Fur-
thermore, as explained in [17], such strongly convex regularization
terms help transform the non-differentiable primal cost (4) into a
better-conditioned smooth optimization problem — see (16) further
ahead. Figure 1 shows the configuration of the knowledge and data
distribution over the network. The dictionary elements {wk} can
be interpreted as the “wisdom” that is distributed over the network,
and which we wish to combine in a distributed manner to form a
greater “intelligence” for interpreting the data sample xt. By being
distributed, we would like the networked agents to find the global
solutions to both the inference problem (3) and the learning problem
(1)–(2) with interactions that are limited to their neighborhoods.

Note that the problem we are solving in this paper is different
from [8] and the traditional distributed learning setting [9, 10, 12,
18,19], where the entire set of model parameters (the dictionary ele-
ments {wk} in this case) are maintained at each agent in the network,
whereas the data samples are collected and processed over the net-
work, i.e., these previous scenarios correspond to data distributed
formulations. What we are studying in this paper is to find a dis-
tributed solution where each agent is only in charge of a portion of
the model (e.g., wk for each agent k). This scenario corresponds to a
model distributed formulation. This case is important because each
agent may be limited in its memory and computing power and may
not be able to store large dictionaries. By having many agents coop-
erate with each other, a larger model that is beyond the ability of any
single agent can be stored and analyzed in a distributed manner.

3. LEARNING OVER DISTRIBUTED MODELS

3.1. Inference over distributed models

Observe that solving the cost function (4) directly requires knowl-
edge of all dictionary elements {wk} and coefficients {yk} from the
other agents due to the sum inside the ‖ · ‖22 that runs from k = 1 up

Fig. 1. Each agent is in charge of one dictionary element, wk, and the
corresponding coefficient, yk, and the data sample xt at each time t
is available to all agents in the network. The results in this paper are
generalized to the case where the data sample xt is only available to
a subset of the agents, and where each agent is responsible for a sub-
matrix of W consisting of multiple columns and not only a single
atom, wk — see the extended work [17].

to N . Therefore, this formulation is not directly amenable to a dis-
tributed solution. However, we can arrive at an efficient distributed
strategy by transforming the original optimization problem into a
dual problem. To begin with, we first transform the minimization of
(4) into the following equivalent constrained optimization problem:

min
{yk},z

1

2

∥∥xt − z
∥∥2

2
+

N∑
k=1

(
γ · |yk|+

δ

2
· y2

k

)
(5)

s.t. z =
N∑

k=1

wkyk (6)

Note that the above problem is convex over both {yk} and z since the
objective is convex and the equality constraint is linear. By strong
duality [20, p.514], it follows that the optimal solution to (5)–(6)
can be found by solving its corresponding dual problem and then
recovering the optimal {yk} and z. To arrive at the dual problem,
we introduce the Lagrangian of (5)–(6) for each input realization xt

as

L({yk}, z, ν;xt)

=
1

2

∥∥xt − z
∥∥2

2
+

N∑
k=1

(
γ|yk|+

δ

2
· y2

k

)
+νT

(
z−

N∑
k=1

wkyk
)

(7)

where {yk} and z are the primal variables and ν is the Lagrange mul-
tiplier (also known as the dual variable). The dual function g(ν;xt)
is defined as the minimization of L({yk}, z, ν;xt) over the primal
variables {yk} and z for each given ν:

g(ν;xt) � min
{yk},z

L({yk}, z, ν;xt) (8)

Given that strong duality holds, it is known that the optimal solution
of (5)–(6) can be found by solving the following dual problem:

νo
t = argmax

ν
g(ν;xt) (9)

and then recovering the optimal primal variables yo
k,t and zot via

({yo
k,t}, zot ) = argmin

{yk},z
L({yk}, z, νo

t ;xt) (10)
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Notice from (7) that the minimization in (10) over the variables {yk}
and z for a given ν is decoupled, and the minimization over each
yk is also decoupled for different k. Therefore, the minimization
over the primal variables can be done independently. Computing
the derivative of L({yk}, z, ν;xt) with respect to z and setting it to
zero, we obtain, for each given ν, the optimal solution of z satisfies

−(xt − z) + ν = 0 ⇔ z = xt − ν (11)

Furthermore, since L({yk}, z, ν;xt) is not differentiable in yk, the
condition for minimizing L({yk}, z, ν;xt) with respect to yk is
given by [21, p.133]:

0 ∈ ∂ykL({yk}, z, ν;xt) = δ · yk + γ · ∂yk |yk| − νTwk (12)

where ∂yk denotes the sub-differential (the set of all subgradients)
with respect to yk, and the sub-differential for |yk| is

∂k|yk| =
{
sign(yk), yk �= 0

[−1, 1], yk = 0
(13)

Applying an argument similar to the one used in [22] to Eq. (12), we
can express the optimal yk as

yk = T γ
δ

(
νTwk

δ

)
(14)

where Tλ(·) denotes the following soft-thresholding scalar-valued
operator of x ∈ R:

Tλ(x) � (|x| − λ)+sgn(x) (15)

where (x)+ = max{0, x}. Observe that the solutions obtained in
(11) and (14) are optimal for a given ν. Only when we have the opti-
mal νo

t to the dual problem (9), the corresponding z and yk acquired
from (11) and (14) become the optimal solution to the original prob-
lem (5)–(6); the notation zot and yo

k,t will be used to represent the
z and yk solutions corresponding to νo

t . Substituting (11) and (14)
into (7), we obtain the dual function as

g(ν;xt) = −1

2
‖ν‖2 + νTxt −

N∑
k=1

S γ
δ

(
νTwk

δ

)

= −
N∑

k=1

{
1

2N
‖ν‖2 − 1

N
νTxt + S γ

δ

(
νTwk

δ

)}
︸ ︷︷ ︸

�Jk(ν; xt)

(16)

where we introduced the following scalar-valued function of x ∈ R,
which is a differentiable convex function:

S γ
δ
(x) � − δ

2
· T 2

γ
δ
(x)− γ ·

∣∣∣T γ
δ
(x)

∣∣∣+ δ · x · T γ
δ
(x) (17)

The functions Tλ(x) and Sλ(x) are illustrated in Fig. 2. Therefore,
the maximization of the dual problem (9) is equivalent to the follow-
ing minimization problem

min
ν

N∑
k=1

Jk(ν;xt) (18)

Note that the new equivalent form (18) is an aggregation of individ-
ual costs associated with different agents; each agent k is associated
with cost Jk(ν;xt), which only requires knowledge of wk and xt.

−λ 0 λ

0

x

A
m
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Tλ(x)
Sλ(x)

Fig. 2. Illustration of the functions Tλ(x) and Sλ(x).

Therefore, we can now directly apply the diffusion strategies devel-
oped in [11, 12] to solve the above problem in a fully distributed
manner over the network:

ψk,i = νk,i−1 − μν · ∇νJk(νk,i−1;xt) (19)

νk,i =
∑
�∈Nk

a�k · ψ�,i (20)

where νk,i denotes the estimate of the optimal νo
t at each agent k at

iteration i (we will use i to denote the i-th iteration of the inference,
and use t to denote the t-th data sample), ψk,i is an intermediate
variable, μν is the step-size parameter chosen to be a small positive
number, and a�k is the combination coefficient that agent k assigns
to the information shared from agent � and it satisfies∑

�∈Nk

a�k = 1, a�k > 0 if � ∈ Nk, a�k = 0 if � /∈ Nk (21)

Let A denote the matrix that collects a�k as its (�, k)-th entry. Then,
it is shown in [11, 12] that as long as the matrix A is primitive,
doubly-stochastic and the step-size is sufficiently small, then the al-
gorithm (19)–(20) converges to the optimal solution of (18) with a
small bias on the order of O(μ2

ν) in squared Euclidean norm. Fi-
nally, after νo

t is estimated at each agent k, the optimal z and yk can
be recovered from ν by substituting νo

t into (11) and (14), respec-
tively:

zot = xt − νo
t (22)

yo
k,t = T γ

δ

(
wT

k ν
o
t

δ

)
(23)

Note that (23) only requires local knowledge of wk. An important
remark we have is a physical interpretation for the optimal dual vari-
able νo

t . Since zot and yo
k,t are the optimal solutions to problem (5)–

(6), then zot and yo
k,t also need to satisfy constraint (6) so that

zot =

N∑
k=1

wky
o
k,t (24)

Expressions (22) and (24) imply that

νo
t = xt −

N∑
k=1

wky
o
k,t (25)

In other words, νo
t admits the interpretation of corresponding to the

optimal prediction error of the input data sample xt using all the
dictionary {wk}. In this way, the diffusion algorithm (19)–(20) is
able to estimate the prediction error in a distributed manner for all
agents.
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3.2. Distributed dictionary updates

We now derive the strategy that updates the local dictionary element
wk at each agent k. Specifically, we need to solve the constrained
stochastic optimization problem (1)–(2), which can be rewritten as

min
W

EQ(W,yo
t ;xt) (26)

s.t. ‖wk‖2 ≤ 1, k = 1, . . . , N (27)

where yo
t � col{yo

1,t, . . . ,y
o
N,t} and Q(W,yo

t ;xt) is defined in
(4). Our strategy is to apply stochastic gradient descent to the cost
function (26) with respect to each wk followed by a projection onto
the constraint set {wk : ‖wk‖ ≤ 1}. The stochastic gradient of the
cost function (26) with respect to wk is the gradient of Q(W,yo

t ;xt)
with respect to wk. Therefore, the algorithm can be described as

wk,t = ΠB

(
wk,t−1 − μw · ∇wkQ(W, yo

t ;xt)
)

(28)

where ΠB(x) is the projection operator onto {wk : ‖wk‖ ≤ 1}.
From (4), the stochastic gradient can be computed as

∇wkQ(W, yo
t ;xt) = −

(
xt −

N∑
k=1

wky
o
k,t

)
yo
k,t (29)

On the face of it, expression (29) requires global knowledge of all
dictionary elements {wk} across the network, which would prevent
the distributed implementation. However, recalling (25), the expres-
sion inside the parenthesis on the right-hand side of (29) is nothing
but νo

t , which is estimated locally by each agent by means of the
distributed inference algorithm (19)–(20). Therefore, the dictionary
learning update (28) can be expressed as

wk,t = ΠB

(
wk,t−1 + μw · νo

t y
o
k,t

)
(30)

where each agent k replaces the above νo
t by the estimate νk,i af-

ter a sufficient number of inference iterations (large enough i). The
rightmost update term in (30) for dictionary element k is effectively
the correlation between the global prediction error, νo

t , and the coef-
ficient yo

k,t (the activation).

4. EXPERIMENT

We consider learning a 100 × 196 dictionary W over a network of
N = 196 agents. The network is generated according to a random
graph, where the probability that any agent is connected to another
agent is 0.2. The network connectivity is checked by inspecting the
algebraic connectivity of the graph Laplacian matrix, and we will
repeat this random graph generation until we find a connected topol-
ogy. Each agent in the network is in charge of one dictionary ele-
ment. We extract a total of 1 million 10 × 10 patches from images
101-200 of the the non-calibrated natural image dataset [23]. Each
image is originally 1536×1024 pixels in size, but the border two pix-
els were discarded around each image and the top-left 1019× 1019
pixels were then used for patch extraction. With each data sample
being a 10 × 10 patch from a certain image, the dimension of the
input data sample is M = 100 (vertically stacked columns). In each
experiment, we randomly initialize each entry of the dictionary ma-
trix W with a zero mean unit variance Gaussian random variable.
The columns are then scaled to guarantee that the sub-unit-norm
constraint (2) is satisfied. Furthermore, in the combination step (20)
of the distributed inference, we use the Metropolis rule [9, 24, 25],

Fig. 3. Application of dictionary learning to image denoising. (a)
Original image; (b) denoised image by using the centralized method
from [2]; (c) dictionary obtained by the centralized method from [2];
(d) image corrupted by additive white Gaussian noise; (e) denoised
image by our proposed distributed method at agent 1; (f) dictionary
obtained by our proposed distributed method.

which is known to be doubly-stochastic. The patch extraction, pre-
processing, and image reconstruction code utilized (excluding dic-
tionary learning and patch inference steps) is borrowed from [26].

For the dictionary learning, we utilize γ = 45, δ = 0.1, and
μν = 0.7. Computer code from the SPAMS toolbox was used to
compare the algorithm from [2] using its default parameters except
where otherwise stated. A step-size of μw = 5 × 10−5 was uti-
lized for adapting the dictionary atoms. The number of iterations
for the diffusion algorithm to optimize (3) was chosen to be 300 it-
erations. The data were presented in minibatches [27] of size four
samples/minibatch and the dictionary update gradients νo

t y
o
k,t were

averaged over the four samples at each step1.

In the far right of Fig. 3, we show the dictionary learned over the
196 agents in the network (bottom) as well as the one learned by us-
ing the centralized method in [2] as a benchmark (top). The learned
dictionary can be used to denoise an image corrupted by noise as
shown in the left four images of Fig. 3. Observe that since the dic-
tionaries were trained on patches arising from natural scenes, these
dictionaries are capable of denoising other natural scenes since they
are expected to share the same statistics. In denoising Fig. 3, the
step-size for our algorithm’s inference was increased to be μν = 1
to increase the quality of the inference result (νo). The number of
iterations of the inference step increased to 500 iterations to ensure
convergence and γ = 45 and δ = 0.1 remained constant for all algo-
rithms. The corrupted image’s PSNR2 is 14.056dB, while the PSNR
for the recovered images using the centralized solution of [2] and
our proposed distributed solution were found to be 21.771dB and
21.976dB (at agent 1), respectively. Furthermore, the average de-
noising PSNR performance across the distributed network was found
to be 21.979dB with a standard deviation of 0.00340dB. We observe
that the performance is relatively uniform across the network.

1We perform the inference for four samples (x1, . . . , x4) at a time to
obtain {νok,1, . . . , νok,4} (all using the same dictionary W ). Then, we update

W by averaging the gradient listed in (30) for those four samples.
2PSNR is the peak-signal-to-noise ratio defined as PSNR �

10 log10(I
2
max/MSE), where Imax is the maximum pixel intensity in the

image and MSE is the mean-square-error over all image pixels.
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[26] G. Peyré, “The numerical tours of signal processing - advanced
computational signal and image processing,” IEEE Comput-
ing in Science and Engineering, vol. 13, no. 4, pp. 94–97, Jul.
2011.

[27] O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao, “Op-
timal distributed online prediction using mini-batches,” The
Journal of Machine Learning Research, vol. 13, pp. 165–202,
Jan. 2012.

3878



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


