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ABSTRACT

This work shows how the combination weights of diffusion strate-
gies for adaptation and learning over networks can be chosen in or-
der for the network mean-square-error performance to match that of
an optimized centralized (or batch) solution. The results show that
this is possible regardless of the network topology, however sparse it
is, as long as the network is connected without disjoint sub-graphs.

Index Terms— Diffusion adaptation, centralized processing,
batch processing, Hastings rule, MRC rule.

1. INTRODUCTION AND RELATION TO PRIOR WORK

Three major classes of distributed strategies for estimation over net-
works have been proposed in the literature: incremental strategy
[1–7], consensus strategy [8–12], and diffusion strategy [13–17]. In-
cremental strategies require the establishment of a cyclic path that
visits all agents in the network sequentially and are therefore prone
to link and node failure. On the other hand, diffusion strategies rely
on in-network processing and local consultation, and were shown in
[18] to have superior mean-square-error (MSE) performance when
compared to consensus strategies. The stability of diffusion net-
works was further shown in [18] to be insensitive to the network
topology, while the stability of consensus networks is sensitive to the
topology and they can become unstable even when all the individual
nodes are stable. For these reasons, we continue our discussion by
focusing on the class of diffusion strategies.

In previous work [19], we established that the MSE performance
of diffusion strategies for adaptation and learning over networks is
dependent on the network topology in an interesting manner. Specif-
ically, we showed that, for sufficiently small step-sizes, the right
eigenvector of the combination matrix that corresponds to the eigen-
value at one determines the network performance in lieu of the other
eigenvectors. By optimizing over left-stochastic combination matri-
ces, we were then able to show that the MSE performance of adap-
tive diffusion networks can attain their lowest (i.e., best) value by
selecting the combination weights according to the Hastings rule. In
this work, we move further to explain how this result implies that
diffusion over arbitrary connected networks can be made to achieve
the same level of performance as provided by clique networks and
by centralized or batch processing. The interesting point to note
is that these results will be seen to be independent of the network
topology. As long as the network is connected so that it does not
exhibit disjoint sub-graphs, and as long as the combination weights
are adjusted according to the Hastings rule, the diffusion networks
can deliver centralized performance no matter how sparse they are.
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Notation: We use lowercase letters to denote vectors, upper-
case letters for matrices, plain letters for deterministic variables, and
boldface letters for random variables. We also use (·)∗ to denote con-
jugate transposition, (·)−1 for matrix inversion, Tr(·) for the trace of
a matrix, and ρ(·) for the spectral radius of a matrix. All vectors in
our treatment are column vectors, with the exception of the regres-
sion vectors, uk,i, which are taken to be row vectors for convenience
of presentation.

2. DATA MODEL

Consider a network consisting of N agents with an arbitrarily
connected topology, as shown in Fig.1a. Each agent k is as-
sumed to sense data {dk(i),uk,i} that satisfy the linear regression
model [20]:

dk(i) = uk,iw
o + vk(i), k = 1, . . . , N (1)

where wo ∈ C
M×1 is an M × 1 unknown vector, uk,i ∈ C

1×M

is a regression vector at time i, and vk(i) ∈ C is a noise signal
also at time i. The agents are interested in estimating wo coopera-
tively through local in-network processing. We adopt the following
assumptions on the statistical properties of the data.

Assumption 1 (Statistical properties of data)

1. The regression data uk,i are temporally white and spatially
independent random variables with zero mean and uniform
covariance matrix Ru , Eu∗

k,iuk,i > 0.

2. The noise signals vk(i) are temporally white and spatially
independent random variables with zero mean and variances
σ2

v,k.

3. The regressors uk,i and the noise signals vℓ(j) are mutually-
independent for all k and ℓ, i and j.

We also adopt the following assumption, which is common in the
literature of stochastic approximation algorithms (see [19]).

Assumption 2 (Small step-sizes) The step-size used in the adapta-
tion strategies is sufficiently small, i.e., µ ≪ 1, such that terms de-
pending on higher-order powers of µ can be ignored and the strate-
gies are mean-square stable whenever necessary.

3. DIFFUSION STRATEGIES

Diffusion strategies constitute a powerful class of distributed mech-
anisms for estimating wo cooperatively [14, 15, 17]. For each agent,
an adaptation step is performed to incorporate local data and a con-
sultation step is used to aggregate information form the neighbors.
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(a) An arbitrarily connected topology. (b) A clique topology. (c) A star topology.

Fig. 1. Three different topologies for adaptive networks.

According to the order of these two steps, two variations are possible
[15]: adapt-then-combine (ATC) and combine-then-adapt (CTA). It
has been shown that ATC in general has superior MSE performance
than CTA [15, 19], so we shall focus on the ATC diffusion strategy
in this work even though the conclusions apply equally well to CTA.

For ATC diffusion, the kth agent performs the following opera-
tions at each time instant i:





ψk,i = wk,i−1 + µu∗
k,i(dk(i)− uk,iwk,i−1)

wk,i =
∑

ℓ∈Nk

aℓkψℓ,i
(2)

where µ > 0 denotes the step-size parameter, Nk denotes the neigh-
borhood of agent k, and aℓk is the nonnegative combination weight
that agent k assigns to the data from agent ℓ ∈ Nk. A sum constraint
is imposed on the combination weights {aℓk}:

∑

ℓ∈Nk

aℓk = 1, k = 1, . . . , N (3)

All weights {aℓk} are collected into a matrix A ∈ R
N×N such that

the (ℓ, k)th entry of A is aℓk. Moreover, aℓk = 0 wherever ℓ /∈ Nk.
It follows from (3) that A is a left-stochastic matrix.

The choice of A affects the performance of the distributed strat-
egy. Different combination rules, such as uniform, Laplacian, max-
imum degree, Metropolis, relative degree, relative degree-variance,
and relative variance have been proposed in the literature [15, 17].
The following analysis explains how the choice of A influences per-
formance.

We assume that the network topology is standard (also called
strongly-connected), meaning that it is connected and contains at
least one self-loop (i.e., akk > 0 some k). Let us introduce the
weight error vector:

w̃k,i , wo −wk,i (4)

and the noise variance matrix profile Rv:

Rv , diag{σ2

v,1, . . . , σ
2

v,N} (5)

In [19], we showed that under Assumptions 1 and 2 and for standard
networks, the network mean-square-deviation (MSD) of the diffu-

sion strategy (2) is given by

MSDnetwork
diff , lim

i→∞

1

N

N∑

k=1

E‖w̃k,i‖
2

=
µM

2
pTRvp+O(µ2) (6)

and the network excess mean-square-error (EMSE) is given by

EMSEnetwork
diff , lim

i→∞

1

N

N∑

k=1

E‖w̃k,i‖
2

Ru

=
µTr(Ru)

2
pTRvp+O(µ2) (7)

where p is the right eigenvector of A corresponding to the eigenvalue
at one and whose entries {pk} are normalized to add up to one:

Ap = p, pT1 = 1, pk > 0 (8)

where 1 is the N × 1 vector with all entries equal to one. We estab-
lished in [19] the following result, which provides one choice for the
combination matrix A to minimize (6) and (7).

Theorem 1 (Optimal mean-square performance for diffusion)
Under Assumptions 1 and 2, one combination rule that minimizes
the MSD and EMSE performance for standard networks is given by
the Hastings rule:

aℓk =






σ2

v,k

max{|Nk|σ2

v,k, |Nℓ|σ2

v,ℓ}
, ℓ ∈ Nk\{k}

1−
∑

m∈Nk\{k}

amk, ℓ = k
(9)

where |Nk| denotes the cardinality of the neighborhood Nk. More-
over, the minimum MSD and EMSE performance levels attained by
the network are given by

MSDnetwork
diff,opt =

µM

2

1

Tr(R−1
v )

+O(µ2) (10)

EMSEnetwork
diff,opt =

µTr(Ru)

2

1

Tr(R−1
v )

+O(µ2) (11)

and the dominant mode of mean-square convergence is

modediff = 1− 2µλmin(Ru) +O(µ2) (12)
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where λmin(·) denotes the smallest eigenvalue of its positive-definite
argument.

Proof See [19].

An interesting conclusion that follows readily from this theorem is
that the optimal attainable MSE performance and the corresponding
convergence rate for standard networks are both independent of the
network topology.

Corollary 1 (Insensitivity to topology) Regardless of the topology
linking the N agents, as long as the network is standard, the optimal
MSE performance, e.g., MSD and EMSE, and convergence rate that
it can achieve are given by the same values (10)–(12) up to varia-
tions of the order of µ2.

Although the optimal mean-square performance does not change
with the topology, the Hastings rule (9), which defines the combina-
tion rule, does depend on the topology and will change accordingly.

3.1. Clique Networks

Another useful conclusion follows from Theorem 1.

Corollary 2 (Comparison to clique networks) Using the Hast-
ings rule (9), diffusion strategies over arbitrary N -agent standard
networks can achieve the same MSE performance and convergence
rate as N -agent fully-connected networks, i.e., clique networks (see
Fig.1b). The differences in performance are of the order of µ2.

Clique networks can also achieve the same optimal performance lev-
els (10) – (11) by using simpler combination rules than the Hastings
rule (9). For instance, one possible choice of A for clique networks
is the rank-one matrix:

Aclique , po1T (13)

where

po ,
R−1

v 1

1TR−1
v 1

(14)

It can be verified that (13) minimizes (6) and achieves the same MSD
performance (10). The choice (13) and (14) has a useful interpreta-
tion. It means that each agent uses a maximal ratio combination
(MRC) rule [20] since for any ℓ ∈ {1, 2, . . . , N},

aℓ1 = aℓ2 = · · · = aℓN =
σ−2

v,ℓ∑N

k=1
σ−2

v,k

, aℓ (15)

Result (15) means that the information emanating from every agent ℓ
is weighted by the same amount aℓ before it reaches any of the other
agents in the clique network. The weight is inversely proportional to
the noise variance at the source agent ℓ, meaning that data emanating
from noisy agents are weighted less heavily. Substituting (15) into
the combination step in the diffusion strategy (2) leads to

w1,i = w2,i = · · · = wN,i =
N∑

ℓ=1

aℓψℓ,i , wi (16)

Substituting (16) into (2) reduces the diffusion strategy to the fol-
lowing batch algorithm:

wi = wi−1 + µ
N∑

ℓ=1

aℓu
∗
ℓ,i(dℓ(i)− uℓ,iwi−1) (17)

Expression (17) has the form of a centralized solution, as expected.
In a clique network, every agent has access to the data from across
the entire network and therefore every agent can run the batch so-
lution (17). By examining (17), we find that every agent computes
a weighted combination of the instantaneous approximate gradients
from across the network (the terms appearing inside the sum and
weighted by aℓ). This implementation is conceptually equivalent to
a data fusion center sitting at the hub of a network with a star topol-
ogy as shown in Fig.1c. We refer to the adaptation rule (17) as a
weighted centralized LMS solution.

4. CENTRALIZED (BATCH) LMS

The argument that led to the centralized LMS implementation (17)
shows that diffusion strategies over arbitrary standard networks us-
ing (9) achieve the same optimal mean-square performance as (17)
using the optimal coefficients (15). In other words, the distributed
diffusion strategy (2) can match the best performance that one can
extract from the batch solution (17); this best performance occurs
when the MRC coefficients (15) are used.

More generally, it is instructive to evaluate the performance of
the batch LMS solution (17) for arbitrary nonnegative weights {aℓ}
that are not necessarily chosen according to (15) but are still required
to satisfy

N∑

ℓ=1

aℓ = 1, ℓ = 1, 2, . . . , N (18)

Define the steady-state MSD and EMSE for the centralized (or
batch) LMS solution (17) as

MSDbatch , lim
i→∞

E‖w̃i‖
2 (19)

EMSEbatch , lim
i→∞

E‖w̃i‖
2

Ru
(20)

and denote the jth eigenvalue of Ru by λj .

Theorem 2 (Mean-square performance for batch LMS) Under
Assumptions 1 and 2, the MSD and EMSE performance of the
centralized (or batch) LMS implementation (17) for arbitrary non-
negative coefficients {aℓ} satisfying (18) are given by

MSDbatch = κ1 · a
TRva (21)

EMSEbatch = κ2 · a
TRva (22)

where a , col{a1, . . . , aN} and

κ1 ,

∑M

j=1

µ

2−µλj

1− ‖a‖2
∑M

j=1

µλj

2−µλj

(23)

κ2 ,

∑M

j=1

µλj

2−µλj

1− ‖a‖2
∑M

j=1

µλj

2−µλj

(24)

The dominant mode of mean-square convergence is given by

modebatch , ρ
(
(I − µΛ)2 + µ2‖a‖2λλT

)
(25)

where Λ = diag{λ1, . . . , λM} and λ = col{λ1, . . . , λM}.

Proof Omitted due to space limitations.
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It is easy to verify that 0 < ‖a‖2 ≤ 1. Under Assumption 2, the
scaling factors {κ1, κ2} in (23) and (24) can be bounded as

M∑

j=1

µ

2− µλj

≤ κ1 ≤

∑M

j=1

µ

2−µλj

1−
∑M

j=1

µλj

2−µλj

(26)

M∑

j=1

µλj

2− µλj

≤ κ2 ≤

∑M

j=1

µλj

2−µλj

1−
∑M

j=1

µλj

2−µλj

(27)

Both upper and lower bounds in (26) and (27) are simultaneously
minimized by the same choice of {aℓ} as in (15). In addition, it can
be verified that

κ1 =
µM

2
+O(µ2) (28)

κ2 =
µTr(Ru)

2
+O(µ2) (29)

Then, we arrive at the following conclusion, which confirms our ear-
lier analysis.

Corollary 3 (Optimal mean-square performance for batch LMS)
Under Assumptions 1 and 2, the MSD and EMSE performance of the
centralized (or batch) LMS algorithm (17) are minimized by using
(15) and the optimal MSD and EMSE performance are given by

MSDopt
batch =

µM

2

1

Tr(R−1
v )

+O(µ2) (30)

EMSEopt
batch =

µTr(Ru)

2

1

Tr(R−1
v )

+O(µ2) (31)

respectively. Moreover, the dominant mode of mean-square conver-
gence is

modebatch = 1− 2µλmin(Ru) +O(µ2) (32)

5. SIMULATION RESULTS AND CONCLUSIONS

We illustrate the results via simulations. We compare four differ-
ent cases: (i) ATC diffusion (2) with the Hastings weights (9) over
the graph in Fig.1a, (ii) ATC diffusion (2) with the Hastings weights
(9) over the graph in Fig.1b, (iii) ATC diffusion (2) with the MRC
weights (15) over the graph in Fig.1b, (iv) batch LMS (17) with
the MRC weights (15) over the graph in Fig.1c. The step-size is
µ = 0.002. The noise variance profile across all agents is shown
in Fig.2(c) and the spectrum of Ru is shown in Fig.2(d). The un-
known parameter wo is randomly generated. The MSD and EMSE
learning curves are obtained by averaging over 100 experiments and
are plotted in Figs.2(a) and 2(b), respectively. The theoretical re-
sults (10) and (11), or (30) and (31), are also plotted in Figs.2(a) and
2(b), respectively. It can be seen that theory matches simulations
rather well (where the learning curves for ATC diffusion with MRC
weights (15) overlap with the one with the Hastings weights (9) for
the same graph in Fig.1b).

From Theorem 1 and Corollary 3, we conclude that by adopting
the Hastings weights (9) and using small step-sizes, diffusion strate-
gies can match the performance of optimal centralized (or batch)
LMS solutions. Besides, from (9) and (15), we see that knowledge
of the noise variances is necessary for computing the combination
weights. In real applications where this knowledge is unavailable,
each agent can learn it by the following recursive estimation [19]:

σ̂
2

v,k(i) = (1− ν)σ̂2

v,k(i− 1) + ν|dk(i)− uk,iwk,i−1|
2 (33)

where 0 < ν ≪ 1 is the forgetting factor.

(a) MSD learning curves for various algorithms.

(b) EMSE learning curves for various algorithms.

(c) The noise variance profile.

(d) The spectrum of Ru.

Fig. 2. Simulation results.
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