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ABSTRACT

One major source of nonlinear distortion in analog-to-digital con-

verters (ADCs) is clipping. The problem introduces spurious noise

across the bandwidth of the sampled data. Prior works recover the

signal from the acquired samples by relying on oversampling or

on the assumption of vacant frequency bands and on the use of

sparse signal representations. In this work, we propose a different

approach, which uses two streams of data to mitigate the clipping

distortion. Simulation results show an SNR improvement of 9dB,

while the conventional approaches may even degrade the SNR in

some situations.

Index Terms— ADC nonlinearity, clipping, spectrum sensing.

1. INTRODUCTION

In the design of Analog-to-Digital (ADC) converters, one impor-

tant source of nonlinear distortion is clipping. The distortion occurs

when the amplitude of the input signal exceeds or saturates the in-

put range of the ADC. In this case, the sampled value is the max

or min value of the ADC’s input range (depending on whether the

signal value is positive or negative). This impairment creates spuri-

ous noise across the entire bandwidth in the sampled data. The trend

towards using wideband receivers in applications, such as spectrum

sensing and geolocation [1–3], further accentuates the problem when

multiple signals are digitally sampled together. Ideally, the gain of

the receiver should be tuned such that the down-converted signals

utilize the full dynamic range of the ADC. However, it is generally

non-trivial to determine the maximum amplitude of the combined

signals. Hence, it is difficult to optimize the dynamic range and pre-

vent clipping distortions.

There are several prior works that proposed schemes to mitigate

the clipping problem. Typically, these works use some of the follow-

ing assumptions:

• The signal is oversampled.

• The signal is bandlimited or it contains some known vacant

frequency bands.

• The signal has a sparse representation.

• The distorted signal can be modeled in terms of some poly-

nomial representation.

For example, in [4], the proposed solution applies polynomial spline

interpolation, followed by sinc interpolation, to the distorted sam-

ples. This approach requires oversampling and both two and four

times oversampling rates were considered. In [5, 6], the authors ex-

ploit prior information about vacant frequency bands. Reference
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[5] assumes oversampling is used and exploits some out-of-band

constraints. Reference [6] assumes that there are some empty sub-

carriers in OFDM signals at the outskirt of the OFDM spectrum.

Both works [5, 6] employ an objective function that minimizes the

noise power in the empty frequency bands. In [7–9], the authors ex-

amine the case when a bandlimited signal is oversampled and some

samples are lost. If we treat the clipped samples as lost samples, the

results in these works can also be applied to the current problem.

In [10], the proposed solution uses frame-based processing and

sparse representation to model an audio signal and its clippings.

Subsequently, a constrained matching pursuit algorithm is used to

estimate the signal. In [11], the authors use a reweighted norm-1

and a trivial pursuit algorithm to remove clipping distortions when

the signal consists of multiple sinusoidals. These algorithms are mo-

tivated by ideas from compressive sensing. In [12], the authors study

the recovery of signals that have a sparse representation. One of the

cases that they studied is clipping. They provide some recovery guar-

antees based on uncertainty relations between pairs of dictionaries.

In [13,14], the authors use polynomial modeling to describe the

clipping operation. The clipping distortions in the polynomial model

are the higher order terms with some unknown coefficients. Adaptive

filtering is used to estimate the unknown coefficients while minimiz-

ing the power of some desired target frequency band.

1.1. Motivation and contribution

The aforementioned approaches rely on the following ingredients:

oversampling, knowledge of some out-of-band frequency bands, or

some knowledge about the structure of the signal. The works also

assume that they have access to only one stream of data.

Now consider the case in spectrum sensing or geolocation ap-

plications where data from multiple sensors are usually available.

In this situation, it should be advantageous to exploit the multiple

stream of data to mitigate clipping distortions. This paper addresses

this problem and proposes a solution method using two streams of

data, and that does not require the same assumptions as listed for the

prior works.

2. PROBLEM FORMULATION

2.1. Data model

Suppose there are L sensors and K transmitters, which are dis-

tributed over some geographic location. Assume that the transmis-

sion medium is a flat fading channel. The signal transmitted by the

k-th transmitter at time t is denoted by sk(t). This signal travels

towards sensor ℓ and arrives there with delay τk,ℓ units of time and

with attenuation Ak,ℓ, namely,
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rk,ℓ(t) = Ak,ℓsk(t− τk,ℓ) (1)

First, assuming that there is no clipping, sensor ℓ will sample the

sum of the signals from all transmitters at nTs:

xℓ[n] =
K
∑

k=1

rk,ℓ(nTs) + vℓ(nTs), ℓ = 1, . . . , L (2)

where vℓ(nTs) is the noise at the ℓ-th sensor. In the clipping prob-

lem, we model the sampled data x̌ℓ[n] as

x̌ℓ[n] =











−CL if xℓ[n] ≤ −CL

xℓ[n] if − CL < xℓ[n] < CL

CL if xℓ[n] ≥ CL

(3)

where the clipping level CL is the maximum absolute input value of

the ADC. We assume clipping occurs when |x̌ℓ[n]| = CL.

Figure 2 gives an example of the clipping distortion on a re-

ceived signal in both the time and frequency domains. The original

received signal consists of 2 bandlimited signals from 2 transmitters

as shown in the bottom left plot. After clipping, the spectrum (in

the bottom right plot) shows the distortions, which overlap with the

original spectrum. The details for this example are in Section 2.3.

We assume that the frequency bands, Ωk , used by the trans-

mitters do not overlap. Using the discrete-time Fourier transform

(DTFT) F , the time-delayed and attenuated signal (1) can be repre-

sented as:

F {Ak,ℓsk(nTs − τk.ℓ)} = Ak,ℓe
−jωτk,ℓSk(e

jω) (4)

where Sk(e
jω) is the DTFT of the original signal. Now, suppose

there is some clipping at the ℓ-th sensor. We denote the indices of the

clipped samples by {φℓ
1, φ

ℓ
2, ...φ

ℓ
Mℓ

} and collect them into a vector

Φℓ whose cardinality is
∣

∣Φℓ
∣

∣ = Mℓ. Then, the desired unclipped

samples xℓ[n] can be represented in vector form as

xℓ = x̌ℓ +Bℓeℓ

xℓ =







xℓ[1]
...

xℓ[N ]






, x̌ℓ =







x̌ℓ[1]
...

x̌ℓ[N ]






, eℓ =







eℓ[1]
...

eℓ[Mℓ]







(5)

and Bℓ is a matrix where

Bℓ =
[

bℓ,1 ... bℓ,Mℓ

]

bℓ,m[n] =











−1, if n = φℓ
m and x̌ℓ[n] = −CL

1, if n = φℓ
m and x̌ℓ[n] = CL

0, otherwise

(6)

Moreover, eℓ is an unknown vector representing the absolute error

between the desired and clipped sample; (i.e., eℓ[m] = |xℓ[m] −
x̌ℓ[m]|, m ∈ Φℓ). Now, recall that the k-th transmitted signal lies in

some frequency band denoted by Ωk . We can represent each band

using the N -point DFT matrix. Since each row of the DFT matrix

corresponds to some frequency component of the sampled data, we

use Wk to denote the rows of the DFT matrix that correspond to Ωk.

We use (5) to write:

Wkxℓ = Wk(x̌ℓ +Bℓeℓ), k = 1, ..., K (7)

2.2. Relation between sensors

In cooperative sensing, we assume that the data can be shared among

the sensors. Note from (1) and (2) that the sensors receive time-

delayed and attenuated versions of the same transmissions. From (4),

the time-delayed and attenuated versions can be expressed as some

phase and amplitude change in the frequency domain. Now, suppose

two sensors are labelled as the ℓ-th and p-th sensors, and both receive

the transmission from the k-th transmitter. The received signals by

the ℓ-th and p-th sensor can be expressed as Ak,ℓsk(nTs− τk,ℓ) and

Ak,psk(nTs − τk,p), respectively. Their DTFT representations are

F {Ak,ℓsk(nTs − τk,ℓ)} = Ak,ℓe
−jωτk,ℓSk(e

jω)

F {Ak,psk(nTs − τk,p)} = Ak,pe
−jωτk,pSk(e

jω)
(8)

We denote the relative amplitude ratio and the time-difference-of-

arrival (TDOA) of the received signal as αk,ℓ,p = Ak,ℓ/Ak,p and

τk,ℓ,p = τk,p − τk,ℓ, respectively. Therefore, the ℓ-th and p-th sen-

sors’ data in (7) are related with the k-th transmitter’s signal as

Wkxℓ ≈ αk,ℓ,p Qk,ℓ,pxp

Wk(x̌ℓ +Bℓeℓ) ≈ αk,ℓ,p Qk,ℓ,p(x̌p +Bpep)
(9)

where

Qk,ℓ,p , diag

















ejωk,1τk,ℓ,p

...

ejωk,Rk
τk,ℓ,p

















Wk, (10)

and {ωk,r | r = 1, ..., Rk} ∈ Ωk . The unknown variables in (9) are

eℓ, ep, αk,ℓ,p and τk,ℓ,p. Furthermore, observe that the equation has

nonlinear terms of the form αk,ℓ,p ejωk,rτk,ℓ,p ep[m]. It is linear if

some of the variables are fixed.

2.3. Example

In this paper, we simulate the following scenario. We assume there

are two transmitters (labeled as 1 and 2) and two sensors (labeled as

1 and 2) as shown in Fig. 1. Each transmitter is positioned at 100m

or 400m from the sensors. Since the speed of light is 3 × 108m/s,

the time delays between the transmitters and sensor 1 are τ1,1 =
0.33µs, τ2,1 = 1.33µs, and the time delays between the transmitters

and sensor 2 are τ1,2 = 1.33µs, τ2,2 = 0.33µs.

Fig. 1. Layout of the sensors and transmitters used in the simulation.

Relation (9) between the sensors requires the TDOA τk,ℓ,p and

the relative amplitude ratio αk,ℓ,p. Using τk,ℓ,p = τk,p − τk,ℓ, we

find that τ1,1,2 = 1µs and τ2,1,2 = −1µs. Next, the factor αk,ℓ,p in

(9) can be derived using the path loss equation (in dB):

Path loss (dB) = 10 n log
10
(d) + C (11)
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where d is the distance between the sensor and transmitter, C is some

constant and n is the path loss exponent. Assuming the signals travel

in a free-space environment, we set n = 2. Hence, the relative path

loss from one transmitter to the two sensors is ±12dB. This means

that α1,1,2 and α2,1,2 are approximately 4 and 0.25, respectively

(since ±20 log
10
(4) ≈ ±12dB).

Next, we assume that the center frequencies of transmitters 1

and 2 are 512MHz and 536MHz, respectively, and both signals have

a bandwidth of 20MHz. We also assume that the received signals

are down-converted by a frequency shift of 500MHz and sampled

at 100MHz. We also assume N=3200 samples are acquired in each

realization. White Guassian noise with standard deviation of 0.001

is added to the data. Realizations of the ideal and distorted spectra

at sensor 1 is shown in Fig. 2. For simplicity, we assume that the

transmitted signals are bandlimited Gaussian signals.
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Fig. 2. The plots show both the time-domain and frequency-domain

of the original and clipped signals at sensor 1. Details of the simula-

tion parameters are in Section 2.3. The clipping level CL is ±3.5.

3. PROPOSED SOLUTION

We propose a solution using data from two sensors and relation (9).

Before describing the solution, we highlight two issues in (9) that

relate to the nonlinearity of the problem and the detection of the

frequency bands of the transmissions.

First, to convert problem (9) to a linear form, we have to fix

some of the variables. For example, if we assume that the TDOA

τk,1,2 is fixed, it is possible to convert the equation to a linear form

(refer to the next section). The maximum absolute bound on the

TDOAs is the distance between the two sensors divided by the speed

of light, which we denoted as τmax. In this work, we uniformly dis-

cretize the possible TDOAs into a list that lies between −τmax and

τmax. The quantity τk,1,2 is estimated by scanning through the TDOA

list and solving the optimization problem (12) for each TDOA. The

estimated TDOA is the one that gives the minimum cost value.

minimize
αk,1,2

‖[−Qk,1,2x2]αk,1,2 +Wkx1‖
2

2

subject to αk,1,2 ≥ 0
(12)

where x1 and x2 are defined in (5). Initially, e1 and e2 in (5) are un-

known. Therefore, they are set to 0 and (12) can be used to estimate

τk,1,2. The TDOA estimation can be repeated and improved, when

e1 and e2 are estimated as shown in the next sections.

Moreover, the frequency bands of the transmissions, Ωk (which

are used to create Wk), are assumed to be known. If Ωk is un-

known, we assume it can be detected from the data under certain

conditions. For example, if one of the sensors’ data do not have

clipping, we can use its data to estimate Ωk. If all the sensors have

clipped data, then we will need to estimate them from their distorted

spectra. From [13, 14], we know that when clipping occurs, the re-

sultant signal can be approximated by some linear combination of

the original signal xℓ[n] and its higher odd powers of the signal

{(xℓ[n])
3, (xℓ[n])

5, ...}. Usually, the power of the higher odd terms

is smaller than the original signal. Therefore, in [13, 14], some of

the transmission bands can be detected by finding the dominant fre-

quency bands in the clipped data. If we have multiple sensors, we

assume that by selecting the dominant frequency bands across the

sensors, we will be able to estimate Ωk . For example, in the distorted

spectrum shown in Fig. 2, we can detect a transmission band around

the normalized frequency of 0.12 (this is the signal from transmitter

1). Conversely, if we have access to the data of sensor 2, we can

detect the signal from transmitter 2. Hence, we can obtain the entire

transmission bands by combing the detections from the two sensors.

3.1. No clipping in one of the sensors in (9)

Let us consider the case where sensor 2 has no clipping. From (5),

this means that e2 is an empty vector and x2 = x̌2. The unknown

variables that remain in (9) are e1 and αk,1,2. Therefore,we can

estimate them by solving the optimization problem:

minimize
e1,αk,1,2

K
∑

k=1

∥

∥

∥

∥

[

WkB1 −Qk,1,2x2

]

[

e1
αk,1,2

]

+Wkx̌1

∥

∥

∥

∥

2

2

subject to e1 ≥ 0,

αk,1,2 ≥ 0

(13)

3.2. Clipping in both sensors in (9)

Now, we consider the case when both sensors have clipping. We

rewrite (9) as

Wk(x̌1 +Bie2) ≈ αk,1,2 Qk,1,2(x̌2 +B2e2)

≈ Qk,1,2x̌2αk,1,2 +Qk,1,2B2e2αk,1,2

(14)

where the variables are e1, e2 and αk,1,2.

Note that there is a nonlinear term involving the product of e2
and αk,1,2. As such, we propose a suboptimal solution that might

converge to a local minimum. This iterative solution fixes the vari-

ables e2 and αk,1,2 alternatively. From (5), if we fix e2, then x2 is

fixed. Therefore, we can use (13) to solve for αk,1,2 and e1. Alter-

natively, if α̂k,1,2 is estimated and fixed, we can find e1 and e2 by

solving

minimize
e1,e2

K
∑

k=1

∥

∥

∥

∥

Pk,1,2

[

e1
e2

]

+Wkx̌1 −Qk,1,2x̌2α̂k,1,2

∥

∥

∥

∥

2

2

subject to e1 ≥ 0,

e2 ≥ 0,

Pk,1,2 =
[

WkB1 −Qk,1,2B2α̂k,1,2

]

(15)

In summary, the proposed solution is:
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Clipping level 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

Number of realizations with clippings 100 100 100 100 100 100 100 98 59 31

Average clippings[%] 17.5 10.2 5.6 2.9 1.4 0.6 0.3 0.1 0.06 0.04

Table 1. Number of realizations with clipping, and the average clipped samples as the clipping level is varied.

1. Initialize α̂k,1,2, ê1 and ê2 to 0. Uniformly discretize be-

tween ±τmax to create a TDOA list.

2. Let x1 = x̌1 +B1ê1, x2 = x̌2 +B2ê2 and scan through the

TDOA list using (12). Find the τ̂k,1,2 from the TDOA list

that gives the minimum cost value.

3. Use (13) to solve for α̂k,1,2.

4. Use α̂k,1,2 and (15) to solve for ê1 and ê2.

5. Repeat step 2 to 4 until the solution converge.

4. SIMULATIONS

We simulate the scenario described in Section 2.3. In the simu-

lations, we vary the clipping level from 2.5 to 7.0 in steps of 0.5.

The number of realizations where clipping occurs (out of 100 sim-

ulations) and the average percentage of clipped samples (out of

N=3200) are shown in Table 1. The average power and standard

deviation of the received signal is 3.37 and 1.84, respectively. The

TDOA list used in estimating τk,1,2 in (12) is between −1.7µs to

1.7µs in steps of 1ns.

For comparision purposes, we implement an algorithm that is

similar to [5, 6], which only uses a single data stream (i.e., sensor

1’s data). We did not compare with other works cited in Section 1

because their assumptions (e.g., 2 times oversampling or sparse rep-

resentation) are not valid in these simulations, or their solutions use

some approximation to model the clipping effects. The performance

metric is evaluated using the signal-to-noise ratio (SNR):

SNR , 20 log
10

(

‖x1‖

‖x1 − x̂1‖

)

(16)

4.1. Prior work [5, 6]

The prior works [5, 6] solve the clipping problem by minimizing

the noise in the out-of-band frequency region. We implement this

idea to compare with our proposed method. Recall from (7) that we

define Wk to correspond to the transmission bands of the signals.

Conversely, we can also define a matrix W c that corresponds to the

out-of-band frequency region. This matrix is simply the rows of

the DFT matrix that do not belong to any of the transmission bands

in {Ω1, ...,ΩK}. Hence, given W c, we can remove the clipping

distortions by finding e1 that minimizes the noise in this frequency

region. We denote this algorithm as Prior work 1:

minimize
e1

‖W cB1e1 +W cx̌1‖
2

subject to e1 ≥ 0
(17)

4.2. Method 1: No clipping in sensor 2

For the first set of simulations, we consider the case when only sen-

sor 1 experiences clipping, while sensor 2 does not. Therefore, we

do not need (15) to recover the signal. Hence, when we use the pro-

posed solution stated at the end of Section 3.2, we skip step 4. We

denote this algorithm as Method 1. Figure 3 shows the SNR of the

clipped signal before compensation and the SNR of the recovered

signal using the Prior work 1 and Method 1.

4.3. Method 2: Clipping in both sensors

Next, we consider the case when both sensors experience clipping.

Hence, we use the proposed solution stated at the end of Section 3.2.

We denote this algorithm as Method 2. Figure 3 shows the SNR of

the clipped signal before compensation and the SNR of the recovered

signal using the Prior work 1 and Method 2.
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SNR curves for Methods 1 and 2 lie on top of each other
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SNR − Prior work 1 [5,6]

SNR − Proposed method 1 (Clipping in sensor 1 only)

SNR − Proposed method 2 (Clipping in both sensors)

Fig. 3. The plot shows the SNR of the clipped signal and the recov-

ered signal using Prior work 1 [5,6], Methods 1 and 2. (Method 1 is

used when only sensor 1’s data has clipping distortion, and Method

2 is used when both sensors’ data have clipping distortions.)

5. DISCUSSION AND CONCLUSION

The simulation results show that the proposed solution (Methods 1

and 2) work better than the prior works [5, 6], in the scenario where

the data are not overly-sampled. The average SNR improvement

using both Method 1 and Method 2 is 9dB. We also observed that

when both sensors’ data are clipped, we still obtain similar perfor-

mance as the case when only 1 sesnor’s data is clipped. We believe

this is because (refer to Fig. 2) sensor 1 received a strong and weak

signal from transmitters 1 and 2, respectively. Hence, the clipping

distortions have a larger impact on the weak signal from transmit-

ter 2. Whereas, in sensor 2, the effect is reversed; a strong signal

from transmitter 2 is received, and the clipping distortions have less

impact on the signal from transmitter 2. Therefore, the simulation

shows similar performance when either one sensor or both sensors

have clipping. We expect the performance for these two cases will

change when, say, sensor 2 moves closer to sensor 1. There is a drop

in performance in the prior work when the clipping level is low (2.5

to 3.0). This is because the number of clipping exceeds the rows

of W c in (17), and the linear system of equations become under-

determined.
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