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ABSTRACT

The goal of this paper is to propose diffusion LMS techniques for
distributed estimation over adaptive networks, which are able to ex-
ploit sparsity in the underlying system model. The approach relies
on convex regularization, common in compressive sensing, to im-
prove the performance of the diffusion strategies. We provide con-
vergence and performance analysis of the proposed method, show-
ing under what conditions it outperforms the unregularized diffusion
version. Simulation results illustrate the advantage of the proposed
filter under the sparsity assumption on the true coefficient vector.

Index Terms— Diffusion LMS, adaptive networks, compres-
sive sensing, distributed estimation, sparse vector.

1. INTRODUCTION

We consider the problem of distributed estimation, where a set of
nodes is required to collectively estimate some parameter of interest
from noisy measurements by relying solely on in-network process-
ing. Thus, consider a set of N nodes distributed over some geo-
graphic region. At every time instant ¢, every node k takes a scalar
measurement dy, () of some random process dy(7) and a 1 x M re-
gression vector, u,;, of some random process u, ; with covariance
matrix Ry x = Euj ;ug; > 0. The objective is for every node in
the network to use the collected data {d (), ux,; } to estimate some
parameter vector wo in a distributed manner. For such purposes,
several diffusion adaptation techniques were proposed and studied
in [1, 2], where the nodes exchange information locally and cooper-
ate in order to estimate wo without the need for a central processor.
The resulting adaptive networks exploit both the time- and spatial-
diversity of the data, endowing the networks with powerful learning
and tracking abilities. In many scenarios, the vector parameter wo
can be sparse, containing only a few large coefficients among many
negligible ones. The prior information about the sparsity of wg can
help improve estimation performance and this fact has already been
investigated in other contexts in the literature. For example, moti-
vated by LASSO [3] and works on compressive sensing [4, 5], sev-
eral algorithms have been proposed before for sparse adaptive filter-
ing using LMS [6], RLS [7, 8], and projection-based methods [9]. A
distributed algorithm implementing LASSO over an ad-hoc network
has also been proposed for sparse linear regression [10]. The basic
idea of these techniques is to introduce a convex penalty, i.e., an ¢1-
norm term, into the cost function to favor sparsity. However, none of
these earlier works considered the design of adaptive distributed so-
lutions that are able to process data online and exploit sparsity at the
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same time. Doing so would endow networks with learning abilities
and would allow them to learn the sparse structure from incoming
data recursively and also to track variations in the sparsity of the
underlying vector.

In this work, we consider adaptive networks running diffusion
techniques under general constraints enforcing sparsity. In particu-
lar, we consider two convex regularization functions. First, we con-
sider the £1-norm, which acts as a uniform zero-attractor. Then, to
improve the estimation performance, we employ a reweighted regu-
larization to selectively promote sparsity on the zero elements of wo,
rather than uniformly on all the elements. We provide convergence
analysis of the proposed methods, giving a closed form expression
for the bias on the estimate due to the regularization. We also pro-
vide a mean-square analysis, showing the conditions under which
the sparse diffusion filter outperforms its unregularized version in
terms of steady-state performance. Interestingly enough, it turns out
that, if the system model is sufficiently sparse, it is possible to tune
a single parameter to achieve better performance than the standard
diffusion algorithm.

The basic contribution of this paper is twofold: (a) the exploita-
tion of sparsity for distributed estimation over adaptive networks;
and (b) the derivation of the mean square properties of the sparse
diffusion adaptive filter.

Notation: we use bold face letters to denote random variables
and normal font letters to denote their realizations. Matrices and
vectors are respectively denoted by capital and small letters.

2. SPARSE DISTRIBUTED ESTIMATION

We assume the presence of a linear measurement model where, at
every time instant ¢, every node k takes a measurement according to
the model:

dy (Z) = Uk,;Wo + Vi (l) (1)

where v (i) is a zero mean random variable with variance 037 k>

independent of wy; for all k£ and ¢, and independent of v;(l) for
l # k and ¢ # j. Linear models as in (1) arise frequently in applica-
tions and are able to capture many cases of interest. The cooperative
sparse estimation problem can be cast as the distributed minimiza-
tion of the following cost function:

M
Jw(w) =Y Eldi(i) — uriw|” + pf (w) @

k=1

where E(-) denotes the expectation operator, and f(w) is a convex
regularization term weighted by the parameter p > 0, which is used
to enforce sparsity. Proceeding as in [2], it is possible to develop
several diffusion adaptation schemes for such purpose. In this paper,
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we consider the Adapt-then-Combine (ATC) strategy and refer to
the following algorithm as the ATC-sparse diffusion (or ATC-SD)
version:

Vi = Wki—1 + Mk Z e,y ;[di(8) — ugiwri—1]
ey,

— i pO f (Wi,i—1) (adaptation step)

(3)
Wh,i = Z al kY, (diffusion step)
lENE
k =1,..., N, where puy is a positive step-size chosen by node £,

the operator * denotes complex conjugate transposition, and 9 f(w)
is the sub-gradient of the convex function f(w). The first step in
(3) is an adaptation step, where the coefficients ¢; , determine which
nodes | € N, should share their measurements {d; (), u;,;} with
node k. The second step is a diffusion step where the intermedi-
ate estimates vy ;, from the neighborhood I € AN, are combined
through the coefficients {a; 1 }. The non-negative combination ma-
trices C = {ci 1} € RMXM and A = {ai} € RMXM ot
isfy e > O,a1 > 0ifl € Ny, 17C = 17, C1 = 1, and
174 = 17. In this paper we consider two different convex regu-
larization terms. Motivated by LASSO [3] and work on compres-
sive sensing [4], we first use the following ¢;-norm as regularization
function, i.e.,

fi(w) = [l )

in the global cost function (2). This choice leads to an algorithm
update in (3) where the subgradient vector is given by df1(w) =
sign(w), where sign(z) is a component-wise function defined as

x/|lz| = #0

0 =0 ©)

sign(z) = {

This update leads to what we shall refer to as the zero-attracting (ZA)
ATC diffusion algorithm. The ZA update uniformly shrinks all com-
ponents of the vector, and does not distinguish between zero and
non-zero elements. Since all the elements are forced toward zero
uniformly, the performance would deteriorate for systems that are
not sufficiently sparse. Motivated by the idea of reweighting in com-
pressive sampling [5], we also consider the following regularization

function:
M

faw) = 3 log(1 + elw]) ©)
m=1
which behaves more similarly to the /o-norm than the /;-norm [5],
thus enhancing the sparsity recovery of the algorithm. The algorithm
in (3) is then updated by using

sign(w)

8f2(w> = €T€|U)|

@)
leading to what we shall refer to as the reweighted zero-attracting
(RZA) ATC diffusion algorithm. The update in (7) selectively

shrinks only the components whose magnitudes are comparable to
1/e, and there is little effect on components satisfying |wy, | > 1/e.

3. PERFORMANCE ANALYSIS

In what follows we view the estimates wy, ; as realizations of a ran-
dom process wy, ; and analyze the performance of the algorithm in
terms of its mean square behavior. Using (3), we define the error

quantities Wy,; = Wo — Wk, Py, ;, = Wwo — P, ;, and the global
vectors:

w1 w1 Py,
WN,i Y

We also introduce the diagonal matrix

M = diag{p1ln, ..., unIn} ©)
and the extended weighting matrices
C=C®Iy, A=AQIu (10)

where ® denotes the Kronecker product operation. We further intro-
duce the following random quantities:

N N

Di = diag{ Z cmul*’,‘ul,i, ey Z clyNul*’,iul,,} (11)
=1 =1
g, = Cleol{ui vi(i),...,uivn(i)} (12)

Then, we can write (3) in compact form as

Y, = Wi—1— M[Dii—1+g;]+ pMOIf(wi—1)
w;, = ATy, (13)

where f(w;—1) = col[0f (w1,i-1),...,0f(wn,i—1)], or, equiv-
alently,

w; = .AT[I — MD-L']’QIJ1;1 — ATMgZ- + pATMaf(wi,l) (14)

3.1. Mean stability

Assuming all regressors wy,; are spatially and temporally indepen-
dent and taking the expectation of (14), we get

Ew; = A"[I — MED;|Ew,_1 + pA" MESf(wi_1)  (15)

Since the subgradient vector 0 f (wl;l) has bounded entries, the al-
gorithm (14) converges in the mean if the matrix A% [I — MED;]
is a stable matrix. Since the entries on the columns of AT add up to
one, and since M is diagonal, we can show that the previous condi-
tion holds if the matrix I — MD is stable, where D = ED;. Using
(11) we conclude that the algorithm converges in the mean for any
step-size satisfying:

2

0 < pp < ~
>\max (Zl:l Cl,kRu,l)

k=1,....,N (16

where Amax(X) denotes the maximum eigenvalue of a Hermitian
matrix X. Furthermore, taking the limit of equation (15) as i — oo,
we get

lim Ew; = wo — pB lim EJf(w;) (17)
71— 00 1—>00

where B = [I — A" [I — MD]] ~' AT M. Thus, the estimate w;

is asymptotically biased; moreover, the smaller the value of p, the

smaller the bias.
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3.2. Mean-Square Performance

Following the energy conservation framework of [1,2], we can eval-
uate the mean of a square weighted norm of w;, obtaining:

Elld |2 = Elldi1 |3 +Elg; MASA" Mg,] + 6:(p)  (18)

where ¥ is a Hermitian nonnegative-definite matrix that we are free
to choose, and

Y = E(I-DM7TASAT(I - MD;) (19
(67
. = 8 (p— X 20
#i(p) pB ( ﬁi) (20)
where
Bi = E|of(wi-1)lasars >0 2
a = —2B3f(wi—1)" MASA" [ — MD]wi—1 (22)

Moreover, setting

G =E[g,g;] = C"diag{o 1Ru,1, ..., 00 nRun}C  (23)
we can rewrite (18) in the form

El|tw;]% = El[@i-1]3 + Tr[SAT MGMA] + ¢i(p)  (24)

where Tr(-) denotes the trace operator. Let o = vec(X) denote the
vector that is obtained by stacking the columns of 3 on top of each
other. Using the Kronecker product property vec(UXV) = (VT ®
U)vec(X), we can vectorize &' in (19) as 0’ = vec(¥') = Fo,
where the matrix F'is given by

F = (I®D{I-1®(DM)—(DM)® I
+ E(DiM)® (DM)HARA). (25)

Then, using the property Tr(XX) = vec(X”)T o and taking the
limit as ¢ — oo (assuming the step-sizes are small enough to ensure
convergence to steady-state), we deduce from (24) that:

lim B3 = [vec(A"MGMA o + piec ( - ‘;ﬁ)

where aioo = lim «; and S = lim ;. The network steady-state
71— 00 71— 00
mean square deviation (MSD) is given by:

I (26)

N
. 1 .
MSD et = lli)nolo N kZﬂ]EH’wa

Then, if the step sizes {ur} are small enough so that the matrix
(I — F) is invertible, and choosing 0 = (I — F) 'vec(I ® I), the
network MSD is given by:

1
~

MSDye: = = vec(AT MGT MA)T (I — F) 'vec(I @ 1)

1 oo
+ Nﬂﬂoo (P - 5:) 27)

The first term on the right-hand side of (27) is the network MSD of
the standard diffusion algorithm (compare with (48) in [2]), whereas
the second term is due to the regularization. Then, if

0o >0 and 0<p< &= 28)

[ee]
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Fig. 1. Transient network MSD for the non-cooperative approaches
LMS, ZA-LMS [6], RZA-LMS [6], and the diffusion techniques
ATC [2], ZA-ATC (eq.(3)-(4)), RZA-ATC (eq.(3)-(6)).

the ATC-SD algorithm would perform better than the standard diffu-
sion [2]. Let us examine the interpretation of the condition cee > 0,
where «; is given by (22), relating this condition to the sparsity of
the vector wo. Indeed, since f(-) is a convex regularization function,
it holds that f(x +y) — f(z) > 8f(z)Ty. Then, choosing = = w;
and y = Bx(wo — w;), where By = 2MASAT [T — MD], the
first condition in (28) can be recast as

oo 2 lim E[f(wi) — f(wi + Bn(wo —wi))] >0 (29)

If the step-sizes are sufficiently small, we can approximate By,
2MAS AT neglecting the second term that depends on 2. Then,
we have w; = w; + Bx(wo — w;) © w; — 2MATAT (w; —
wo). This expression can be interpreted as a gradient descent update
minimizing the function ||w; — wol%s; 4=, yielding @ closer to wo
than w;. As a consequence, if wy is sparse, w; will be more sparse
than w;. Thus, since this is true for all 7, considering the expectation
and taking the limit as ¢ — oo, the condition in (29) will likely be
true. Then, by selecting properly the sparsity coefficient p, the ATC-
SD algorithm will have better MSD than the standard ATC diffusion
algorithm. On the other hand, if wo is not sparse, condition (29)
in general would not be true, thus leading the ATC-SD algorithm to
perform worse than standard ATC diffusion.

4. NUMERICAL RESULTS

In this section, we provide some numerical examples to illustrate the
performance of the ATC-SD algorithm. We consider a connected
network composed of 20 nodes. The regressors have size M = 50
and are zero-mean white Gaussian distributed with covariance ma-
trices Ry x = o021, with 02 = 0.1, for all k. The background
white noise power is set to 2 = 0.01. The first example aims
to show the tracking and steady-state performance for the ATC-SD
algorithm. In Fig. 1, we report the learning curves in terms of net-
work MSD of 6 different adaptive filters: ATC diffusion LMS [2],
ZA-ATC (eq.(3)-(4)) and RZA-ATC diffusion (eq.(3)-(6)), and the
corresponding non cooperative approaches from [6]. The simula-
tions use a value of x = 0.2 and the results are averaged over 100
independent experiments. The sparsity parameters are set equal to
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Fig. 2. Differential MSD versus sparsity parameter p for ZA-ATC
Diffusion LMS, for different degrees of system sparsity.

prus = 5x 1072 for the non cooperative approaches, pza = 1073
for ZA-ATC, prza = 0.25 x 1073 for RZA-ATC, and ¢ = 10.
In this simulation, we consider diffusion algorithms without mea-
surement exchange, i.e., C = I, and a combination matrix A that
simply averages the estimates from the neighborhood, hence, such
that a;,, = 1/|Nj| for all I. Initially, only one of the 50 elements
of wy is set equal to one while the others are equal to zero, making
the system very sparse. After 600 iterations, 25 elements are ran-
domly selected and set equal to 1, making the system have a spar-
sity ratio of 25/50. After 1200 iterations, all the elements are set
equal to 1, leaving a completely non-sparse system. As we see from
Fig. 1, when the system is very sparse both ZA-ATC and RZA-ATC
yield better steady-state performance than standard diffusion. The
RZA-ATC outperforms ZA-ATC thanks to the reweighted regular-
ization. When the vector wq is only half sparse, the performance
of ZA-ATC deteriorates, performing worse than standard diffusion,
while RZA-ATC has the best performance among the three diffusion
filters. When the system is completely non-sparse, the RZA-ATC
still performs comparably to the standard diffusion filter. Finally, we
can also notice the gain of the diffusion schemes with respect to the
non-cooperative approaches from [6]. To quantify the effect of the
sparsity parameter p on the performance of the ATC-SD filters, we
consider two additional examples. In Fig. 2, we show the behavior
of the difference (in dB) between the network MSD of ATC-ZA and
standard diffusion, versus p, for different sparsity degrees of wq. The
results are averaged over 100 independent experiments and over 100
samples after convergence. As we can see from Fig. 2, reducing the
sparsity of wo, the interval of p values that yield a gain for ATC-ZA
with respect to standard diffusion becomes smaller, until it reduces
to zero when the system is not sparse enough. In Fig. 3, we re-
peat the same experiment considering the ATC-RZA algorithm. As
wee can see, ATC-RZA gives better performance than ZA-ATC and
yields a performance loss with respect to standard diffusion, for any
p, only when the vector wg is completely non-sparse.

5. CONCLUSION

In this paper we proposed a class of diffusion LMS strategies, reg-
ularized by convex sparsifying penalties, for distributed estimation
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Fig. 3. Differential MSD versus sparsity parameter p for RZA-ATC
Diffusion LMS, for different degrees of system sparsity.

over adaptive networks. Convergence and mean square analysis of
the sparse adaptive diffusion filter show under what conditions we
have dominance of the proposed method with respect to its unreg-
ularized counterpart in terms of steady-state performance. Two dif-
ferent penalty functions have been employed, the ¢;-norm, which
uniformly attracts to zero all the vector elements, and a reweighted
function, which selectively shrinks only the elements with small
magnitude. Numerical results show the potential benefits of using
such strategies. Other penalty functions can also be useful. Adap-
tive diffusion strategies for the distributed optimization of convex
cost functions are further considered in [11].
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