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ABSTRACT

In this work we analyze the mean-square performance of different
strategies for adaptation over two-node least-mean-squares (LMS)
networks. The results highlight some interesting properties for adap-
tive networks in comparison to centralized solutions. The analysis
reveals that the adapt-then-combine (ATC) adaptive network algo-
rithm can achieve lower excess-mean-square-error (EMSE) than a
centralized solution that is based on either block or incremental LMS
strategies with the same convergence rate.

Index Terms— LMS, adaptive networks, diffusion, fusion cen-
ter, incremental

1. INTRODUCTION

Consider an adaptive network consisting of only two nodes. We fo-
cus in this article on the case of two nodes because closed-form ex-
pressions for the mean-square performance of the nodes are possible
in this case (under some assumptions on the data). These expressions
facilitate the comparisons among the various algorithms. Despite
this fact, it is worth noting that limiting the analysis to two nodes is
still a challenging task. As is well-known in the adaptive filtering lit-
erature, studying the performance of a single stand-alone LMS filter
is not trivial and generally requires certain assumptions on the data
(this is because adaptive filters, by their very nature, are stochastic,
nonlinear, and time-variant systems). When two adaptive nodes are
allowed to interact with each other, as in the case in this paper, then
the nodes end up influencing each other’s behavior. For this reason,
extending the performance analysis to the two nodes case is more
demanding than the single node case.

We refer to the nodes as nodes 1 and 2. Both nodes are assumed
to measure data that satisfy the linear regression model:

dk(i) = uk,iw
o + vk(i), k = 1, 2 (1)

where wo is an M × 1 unknown vector, uk,i is the 1 × M regres-
sion vector at time i, and vk(i) is noise also at time i. All random
variables are assumed to be zero-mean. The subscript k in (1) refers
to the node number. The noise variance of node 2 is assumed to
be less than that of node 1, i.e., σ2

v,2 < σ2
v,1. The nodes are in-

terested in estimating the unknown parameter wo. Assume initially
that each node independently uses the least-mean squares (LMS) [1]
algorithm to update its weight estimate, say, as (see Fig. 1):{

node 1: w1,i = w1,i−1 + μu∗
1,i(d1(i)− u1,iw1,i−1)

node 2: w2,i = w2,i−1 + μu∗
2,i(d2(i)− u2,iw2,i−1)

(2)

where μ denotes the step-size parameter. The performance of an
adaptive algorithm is usually assessed in terms of its excess mean-
square error (EMSE). If we introduce the a priori error

ea,k(i) � uk,i(w
o −wk,i−1) (3)
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Fig. 1: Nodes 1 and 2 process the data independently by means of
two local LMS filters.

then the EMSE is defined as [1]

EMSEk � lim
i→∞

E|ea,k(i)|2 (4)

It is known that for sufficiently small step-sizes, the EMSE of an
LMS filter is given by [1]:

EMSEk ≈ 1

2
μσ2

v,kTr(Ru,k) (5)

where Ru,k is the covariance matrix of uk,i. Assuming a uniform
regression data profile for both nodes, i.e., Ru,1 = Ru,2 = Ru, then
expression (5) confirms the expected result that node 2 will achieve
a better EMSE than node 1 because node 2 has lower noise variance
than node 1. The interesting question that we wish to consider is
whether it is possible to improve the EMSE performance for both
nodes if they are allowed to cooperate with each other in some man-
ner.

Fig. 2: Nodes 1 and 2 send their data to the fusion center for pro-
cessing.

2. TWO CENTRALIZED ALGORITHMS

One standard way to realize cooperation is to connect the two nodes
to a central fusion center that would collect their data and use the
data to estimate wo. The fusion center generally operates on the
data in one of two ways. The first method is illustrated in Fig. 2 and
we refer to it as block LMS. In this method, the weight estimate is
updated as follows:

wi = wi−1 + μ′
[
u1,i

u2,i

]∗ ([
d1(i)
d2(i)

]
−

[
u1,i

u2,i

]
wi−1

)
(6)

with step-size μ′. We see from (6) that at every iteration, the data
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{d1(i),u1,i} and {d2(i),u2,i} from both nodes are blended to-
gether into vectors and used simultaneously by the fusion center to
update wi−1 to wi. The second method that the fusion center can
use to process the data is to apply two consecutive updates by using
one data point at a time (see Fig. 3), i.e.,⎧⎪⎪⎨

⎪⎪⎩

φ0,i ← wi−1

φ1,i = φ0,i + μ′u∗
1,i(d1(i)− u1,iφ0,i)

φ2,i = φ1,i + μ′u∗
2,i(d2(i)− u2,iφ1,i)

wi ← φ2,i

(7)

We see from (7) that the fusion center in this case first uses the data
from node 1 to update wi−1 to an intermediate value φ1,i, and then
uses the data from node 2 to get φ2,i, which is assigned to wi.
Method (7) is actually a special case of the incremental LMS pro-
cedure proposed in [2].

Fig. 3: Nodes 1 and 2 send their data to the fusion center where they
are processed sequentially.

We observe from (6) and (7) that in going from wi−1 to wi,
the block and incremental LMS algorithms employ two sets of data
for each such update (while the conventional LMS recursions by the
independent nodes in (2) employ one set of data for each update of
their respective weight estimates). In order to ensure a fair compar-
ison of the EMSE performance of the various algorithms, we shall
set μ′ = μ/2 so that the rates of convergence of all the algorithms
considered in this paper are similar. Now, compared to the non-
cooperative method (2) where the nodes act individually, the two fu-
sion algorithms (6) and (7) can be shown to lead to improved EMSE
performance (the arguments further ahead establish this conclusion
among several other properties). The EMSE for block LMS (6) is
defined as

EMSEblk � 1

2
lim
i→∞

E‖ea,i‖22 (8)

where the a priori error is now the two-dimensional vector:

ea,i �
[
u1,i

u2,i

]
(wo −wi−1) (9)

Note that in (8) we are scaling by 1/2 because the squared-Euclidean
norm in (8) involves the sum of two error quantities. Likewise, the
EMSE of the incremental implementation (7) is defined as:

EMSEinc �
1

2
lim
i→∞

[
E|ea,1(i)|2 + E|ea,2(i)|2

]
(10)

where

ea,k(i) � uk,i(w
o − φk−1,i) (11)

3. DIFFUSION ADAPTATION

We now consider fully decentralized algorithms of the diffusion
type, which have been introduced in [3–6]. Our objective is to show
that diffusion algorithms exploit the spatial diversity in the data more
fully in a manner that can lead to better EMSE performance than the
block and incremental algorithms when all algorithms converge at a
similar rate.

Fig. 4: A combine-then-adapt (CTA) diffusion adaptation step using
combination coefficients {α, 1− α, β, 1− β}.

Diffusion algorithms consist of two steps: updating the weight
estimate using local measurements (adaptation step) and aggregating
the information from the neighbors (combination step). According
to the order of these two steps, diffusion algorithms can be catego-
rized into two classes: combine-then-adapt (CTA) (see Fig. 4):

node 1:

{
φ1,i−1 =αw1,i−1 + (1− α)w2,i−1

w1,i =φ1,i−1 + μu∗
1,i(d1(i)− u1,iφ1,i−1)

(12)

node 2:

{
φ2,i−1 =βw2,i−1 + (1− β)w1,i−1

w2,i =φ2,i−1 + μu∗
2,i(d2(i)− u2,iφ2,i−1)

(13)

and adapt-then-combine (ATC) (see Fig. 5):

node 1:

{
φ1,i = w1,i−1 + μu∗

1,i(d1(i)− u1,iw1,i−1)
w1,i = αφ1,i + (1− α)φ2,i

(14)

node 2:

{
φ2,i = w2,i−1 + μu∗

2,i(d2(i)− u2,iw2,i−1)
w2,i = βφ2,i + (1− β)φ1,i

(15)

where α, β ∈ [0, 1] denote combination coefficients used by nodes
1 and 2. The ATC scheme (14)-(15) outperforms CTA (12)-(13)
because it shares/diffuses updated information that is less noisy than
CTA; see the analysis further ahead and also [4].

Fig. 5: An adapt-then-combine (ATC) diffusion adaptation step us-
ing combination coefficients {α, 1− α, β, 1− β}.

An important factor affecting the performance of diffusion LMS
algorithms is the choice of the combination coefficients α and β.
Different combination rules, such as uniform, Laplacian, maximum
degree, Metropolis, relative degree, and relative degree-variance [4],
have been proposed in the literature on graph models and networks.
Apart from these static combination rules, where the coefficients are
kept constant over time, adaptive rules are also possible. In the adap-
tive case, the combination weights can be adjusted regularly so that
the network can respond to real-time node conditions [3] [7].

We now derive closed-form expressions for the mean-square
performance of the LMS diffusion networks (12)-(15). The analysis
highlights some interesting properties of adaptive networks in com-
parison to the (centralized) block and incremental algorithms (6)
and (7).
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4. PERFORMANCE ANALYSIS

We rely on the energy conservation framework of [1] to conduct the
performance analysis. We introduce the following assumptions on
the statistical properties of the data:

(a) The regression data uk,i are temporally and spatially in-
dependent and identically distributed (i.i.d.) circular white
Gaussian random variables with zero mean and diagonal
covariance matrix σ2

uIM .

(b) The noise signals vk(i) are temporally and spatially i.i.d. cir-
cular white Gaussian random variables with zero mean and
variances σ2

v,k.

(c) The regression data uk,i and noise signals vk(j) are indepen-
dent of each other for all i and j.

We start by recalling a classical result about the mean-square perfor-
mance of a stand-alone LMS filter and use it to describe the EMSEs
of the two independently-operating nodes in (2) when the regression
data and noise signals are temporally i.i.d. circular white Gaussian
random variables and independent of each other [1]:

EMSEind,k =
Mμ2σ4

uσ
2
v,k

1− ρ
, k = 1, 2 (16)

where

ρ � (1− μσ2
u)

2 +Mμ2σ4
u (17)

The step-size μ is chosen to ensure ρ < 1 in order to guarantee mean
square convergence. The resulting average EMSE of both nodes is

EMSEind =
Mμ2σ4

u

1− ρ
· σ

2
v,1 + σ2

v,2

2
(18)

4.1. EMSE of CTA LMS Networks
Studying the performance of diffusion networks is more challenging
than stand-alone LMS filters due to the coupling between the filters
as indicated in Fig. 4 and 5. Using energy conversation arguments,
we can derive expressions for the EMSEs of both nodes in a CTA
network. We omit the derivations for space limitations. When the
step-size μ is sufficiently small so that

√
Mμσ2

u � 1, we can show
that the average EMSE of both nodes in a CTA network is given by:

EMSEcta � 1

2
(EMSEcta,1 + EMSEcta,2)

≈ Mμ2σ4
u

(2− α− β)2

[
σ2
v,1(1− β)2 + σ2

v,2(1− α)2

1− ρ

+
(σ2

v,1 + σ2
v,2)((1− α)2 + (1− β)2)

2[1− ρ(α+ β − 1)2]

− σ2
v,1(1− β)2 + σ2

v,2(1− α)2

1− ρ(α+ β − 1)

+
(σ2

v,1 + σ2
v,2)(1− α)(1− β)

1− ρ(α+ β − 1)

]
(19)

where EMSEcta,k is the EMSE of node k. Without loss of general-
ity, let us write σ2

v,2 = γσ2
v,1 and assume 0 < γ < 1. Then it can be

verified that the network EMSE (19) is minimized when we choose

α =
γ

1 + γ
and β =

1

1 + γ
(20)

This choice coincides with the relative degree-variance rule pro-
posed in [4]. The minimum value of (19) is then

EMSEo−cta ≈ Mμ2σ4
uσ

2
v,1

(
ρ

1− ρ

γ

1 + γ
+

1 + γ

2

)
(21)

4.2. EMSE of ATC LMS Networks
Likewise, we can derive an expression for the EMSE of an ATC
network:

EMSEatc �
1

2
(EMSEatc,1 + EMSEatc,2)

≈ Mμ2σ4
u

(2− α− β)2

[
σ2
v,1(1− β)2 + σ2

v,2(1− α)2

1− ρ

+
(σ2

v,1 + σ2
v,2)[(1− α)2 + (1− β)2](α+ β − 1)2

2[1− ρ(α+ β − 1)2]

− [(σ2
v,1(1− β)2 + σ2

v,2(1− α)2)](α+ β − 1)

1− ρ(α+ β − 1)

+
(σ2

v,1 + σ2
v,2)(1− α)(1− β)(α+ β − 1)

1− ρ(α+ β − 1)

]
(22)

where EMSEatc,k is the EMSE of node k. We can again verify that
the network EMSE (22) is minimized for the same choice (20). The
resulting minimum EMSE is

EMSEo−atc ≈ Mμ2σ4
uσ

2
v,1

1− ρ
· γ

1 + γ
(23)

4.3. EMSEs of Block and Incremental LMS Networks
Using energy conservation arguments, we can also derive the EMSE
of the block LMS network (6) (assuming μ′ = μ/2) as:

EMSEblk =
Mμ2σ4

u

1− ρ′
· σ

2
v,1 + σ2

v,2

4
(24)

where

ρ′ � (1− μσ2
u)

2 +
M

2
μ2σ4

u (25)

With regards to the incremental LMS network (7), we can use the
results of [2] to get (also assuming μ′ = μ/2):

EMSEinc ≈ Mμ2σ4
u

1− ρ′
· σ

2
v,1 + σ2

v,2

4
(26)

It is worth noting that, although (24) and (26) are identical for small
μ, the incremental LMS algorithm actually outperforms block LMS
because incremental LMS uses the intermediate estimate φ1,i dur-
ing one step of the update in (7) while the block LMS in (6) does
not [2] [8]. The intermediate estimate φ1,i is generally “less noisy”
than wi−1 so that the incremental LMS gradually outputs a better
estimate than the block LMS. However, we shall not distinguish be-
tween incremental LMS and block LMS in this work.

4.4. Performance Comparison
We summarize the mean-square performance of various strategies
over two-node LMS networks in Table 1. We compare the perfor-
mance of the algorithms based on the theoretical results in Table 2.
The entries in Table 2 should be read from left to right. For exam-
ple, the starred entry in the second row and fourth column is read as
“O(ptimal)-ATC is better than incremental LMS”.
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Table 1: EMSEs of various strategies over two-node networks.

Type Network EMSE
O-ATC (14)-(15) c1σ

2
v,harm (23)

O-CTA (12)-(13) c1[ρσ
2
v,harm + 2(1− ρ)σ2

v,arth] (21)

Inc-LMS (6) c2σ
2
v,arth (24)

Blk-LMS (7) c2σ
2
v,arth (26)

Ind-LMS (2) 2c1σ
2
v,arth (18)

∗ σ2
v,harm � 2σ2

v,1σ
2
v,2

σ2
v,1+σ2

v,2
and σ2

v,arth � σ2
v,1+σ2

v,2

2
.

† c1 � Mμ2σ4
u

2(1−ρ)
and c2 � Mμ2σ4

u
2(1−ρ′) .

‡ ρ and ρ′ are defined in (17) and (25), respectively.
§ √Mμσ2

u � 1 such that c1 ≈ c2.
¶ The step-size for blk/inc LMS is μ′ = μ/2.

Table 2: EMSE relationships for the various adaptation strategies.

O-ATC O-CTA Inc-LMS Blk-LMS Ind-LMS

O-ATC equal slightly better better* better better

O-CTA slightly worse equal (28) (28) better

Inc-LMS worse (28) equal slightly better better

Blk-LMS worse (28) slightly worse equal better

Ind-LMS worse worse worse worse equal

In addition, it can be verified that the performance of optimal
ATC is better than any one of the individually-operating nodes:

EMSEo−atc < EMSEind,2 < EMSEind,1 (27)

In this way, we find that optimal ATC is optimal among the other
adaptive strategies listed in Table 2. However, as expressions (23)
and (21) indicate, the performance of optimal ATC is only slightly
better than that of optimal CTA for two-node networks, because ρ is
usually close to one.

We can also verify that the relationship between the performance
of optimal CTA and block/incremental LMS depends on ρ, σ2

v,1, and
σ2
v,2:⎧⎨

⎩
EMSEo−cta < EMSEblk/inc,

4σ2
v,1σ

2
v,2

(σ2
v,1 + σ2

v,2)
2
< 2− 1

ρ

EMSEo−cta ≥ EMSEblk/inc, otherwise

(28)

Similarly, the relationship between the performance of optimal CTA
and individually-operating nodes depends on ρ, σ2

v,1, and σ2
v,2:⎧⎨

⎩
EMSEo−cta < EMSEind,2,

√
1− ρ

1 + ρ
<

σ2
v,2

σ2
v,1

EMSEo−cta ≥ EMSEind,2, otherwise

(29)

5. SIMULATIONS RESULTS

We illustrate the theoretical results via simulations. The simula-
tion profile is listed in Table 3. The weight vector wo was selected
randomly. Simulation results are shown in Fig. 6 from which we
see that the theoretical results match well with simulation results.
The optimal ATC (23) achieves the minimum network EMSE. The
individual LMS (18) exhibits the worst EMSE level. The perfor-
mance difference between optimal ATC and optimal CTA is negli-
gible. And the performance difference between block LMS and in-
cremental LMS is also negligible. Besides, it is worth noting that all
algorithms converge at the same rate as a result of the normalization
μ′ = μ/2.

Table 3: Simulation profile.

M μ σ2
v,1 σ2

v,2 σ2
u # of iter. # of trials

10 0.005 0.5 0.3 1 2000 1000

0 500 1000 1500 2000
−30

−25

−20

−15

−10

−5

0

5

10

Iteration

E
M

S
E

 in
 d

B

simulated, optimal ATC
theoretical, optimal ATC
simulated, optimal CTA
theoretical, optimal CTA
simulated, individual LMS
theoretical, individual LMS
simulated, block LMS
theoretical, block LMS
simulated, incremental LMS

optimal ATC and CTA

block and incremental LMS

identical convergence rate

Fig. 6: EMSE comparison between different two-node LMS net-
works.

6. CONCLUSION

In this work we compared the EMSEs for various algorithms for
adaptation over networks. We obtained expressions for the EMSEs
of ATC and CTA networks. Based on the closed-form results, we
were able to optimize the combination coefficients for ATC and CTA
networks. The analysis shows that the relative degree-variance rule
(20) is optimal for two-node LMS networks. Based on the analysis
we further noted that an ATC network with optimal combining co-
efficients can achieve the lowest network EMSE when the step-sizes
are carefully chosen for all algorithms such that they all converge at
the same rate.
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