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ABSTRACT

Mobile adaptive networks consist of a collection of nodes with learn-
ing and motion abilities that interact with each other locally in order
to solve distributed processing and distributed inference problems
in real-time. In this paper, we develop adaptation algorithms that
exhibit self-organization properties and apply them to the model of
cooperative hunting among predators. The results help provide an
explanation for the agile adjustment of network patterns in the inter-
action between fish schools and predators.

Index Terms— Cooperative hunting, self-organization, diffu-
sion adaptation, mobile adaptive networks.

1. INTRODUCTION

Self-organization in biological networks emerges from the localized
interactions among the members of the network [1, 2]. One inter-
esting organized behavior in animal groups is their collective mo-
tion, where animals move together in amazing synchrony such as
fish schools swimming together [3], bees swarming towards a hive,
or birds flying in V-formations [4].

In fish schools, the individual members tend to move coherently
while avoiding collisions. Such schooling behavior helps fish dis-
courage attacks from their predators [5]. In [6], we used the con-
cept of adaptive networks, along with diffusion adaptation mecha-
nisms [7–9], to model the schooling behavior of fish and how they
avoid mobile predators.

Cooperative behavior can be observed among predators as well.
For example, dolphins encircle their prey [10] and killer whales co-
operatively herd herring into a tight ball close to the surface [11].
Cooperative hunting plays a role in increasing foraging efficiency. In
this paper, we use diffusion adaptation to explain how predators co-
operate with each other to surround a fish school and trap the school
while attacking.

2. DISTRIBUTED ESTIMATION

2.1. Measurement Model

Let w◦ denote the location vector of a target that the fish school
wishes to track (e.g., the location of a food source). As Fig. 1 shows,
the distance d◦k(i) between the target and node k at location xk,i at
time i is given by the inner product

d◦k(i) = u◦
k,i(w

◦ − xk,i) (1)
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Fig. 1. Distance and direction of the target w◦ from node k at loca-
tion xk. The unit direction vector u◦

k points towards w◦.

where u◦
k,i denotes the unit (row) direction vector pointing to w◦

from xk,i; this vector is defined in terms of the azimuth angle, θk(i),
i.e.,

u◦
k,i =

[
cos θk(i) sin θk(i)

]
(2)

The superscript ◦ in (1)-(2) is used to indicate true values. How-
ever, nodes observe noisy measurements of the direction u◦

k,i and
the distance d◦k(i) to the target, say,

uk,i = u◦
k,i + nu

k,i, dk(i) = d◦k(i) + nd
k(i) (3)

where nu
k,i and nd

k(i) denote additive noise terms of sizes M and
1, respectively. Rearranging the above equations, we obtain a linear
regression model relating dk(i) and uk,i to w◦, namely,

dk(i) + uk,ixk,i = uk,iw
◦ + nk(i) (4)

where the scalar noise term nk(i) is given by

nk(i) � −nu
k,i(w

◦ − xk,i) + nd
k(i)

2.2. Diffusion Adaptation

Consider a set of N nodes distributed over some spatial region. Two
nodes are said to be neighbors if they can share information (i.e., ex-
change some data). The set of neighbors of node k, including node k
itself, is called the neighborhood of k and is denoted by Nk. The ob-
jective of the network is to estimate w◦ in a fully distributed manner
and in real-time, where each node is allowed to interact only with its
neighbors. One such scheme is the so-called Adapt-then-Combine
(ATC) diffusion algorithm [9,12]. The algorithm is a stochastic gra-
dient solution that optimizes a mean-square error cost function in a
fully distributed manner (derivations and mean-square-error analysis
can be found in [9]). The algorithm is described as follows:

ψk,i = wk,i−1 + μku
T
k,i[dk(i)− uk,i(wk,i−1 − xk,i)]

wk,i =
∑
j∈Nk

aj,kψj,i
(5)
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where μk is a positive step size used by node k and {aj,k} is a set of
non-negative real weights assigned to node k and satisfying:

N∑
j=1

aj,k = 1, aj,k = 0 if j /∈ Nk (6)

The resulting estimate of node k at time i is denoted by wk,i. In
implementation (5), the nodes in the neighborhood of node k share
their intermediate estimates {ψj,i}.

In the application we are studying in this paper, the nodes of the
network wish to track two separate targets: the location of the food
source and the location of the predator. The modeling equations
described above apply to either target. To distinguish between them,
we shall use superscripts f and p for food and predator, respectively.
Thus, instead of w◦, we shall write wf for the actual location of
the food source and wp for the actual location of the predator. In
addition, variables without superscripts will denote quantities that
are related to the nodes of the adaptive network.

3. MOTION CONTROL MECHANISM FOR ADAPTIVE
NETWORKS (FISH SCHOOLS)

Before we proceed, we introduce two operators on 2×1 vectors. Let

v =
[
v1 v2

]T
be a 2× 1 vector. Then we define

u(v) � v/‖v‖; v⊥ �
[−v2 v1

]T
That is, u(v) normalizes the vector and ⊥ finds a vector perpendicu-
lar to v.

In a mobile network, every node k updates its location vector
over time according to the rule:

xk,i+1 = xk,i +�t · vk,i+1 (7)

where �t represents the time step and vk,i+1 is the velocity vector of
the node. As was shown in [6], there are three factors influencing the
velocity vector of node k. First, the action of each node depends on
the location of the predator. Referring to Fig. 2, each node focuses
on foraging in region I and on escaping from predators in the other
regions. The velocity vector is set as follows:

vak,i+1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u(wf
k,i − xk,i) (region I)

c1 · u[(xk,i − wp
k,i)

⊥] (region II)

−u(vpk,i) (region III)(
2r1/‖xk,i − wp

k,i‖ − 1
)
u(xk,i − wp

k,i) (region IV)

(8)
where c1 is equal to 1 if the inner product

(xk,i − wp
k,i)

T (vpk,i)
⊥

is greater than zero; otherwise, c1 is equal to −1. Here, we use
wf

k,i and wp
k,i to denote the local estimates at node k at time i. For

multiple predators, each node in the fish school tracks the location
of the nearest predator. The estimation is implemented by algorithm
(5). Moreover, in (8), vpk,i is the local estimate of the predator’s
velocity, which can be estimated as

vpk,i =
1

�t
(wp

k,i − wp
k,i−1) (9)

Second, a network may become fragmented after an attack by a
predator. To reunite, nodes on the outer boundaries have to estimate

Fig. 2. Two concentric circles with the origin at the predator and
radii r1 and 2r1. The four regions represent the areas outside the
circle of radius 2r1, inside the circle of radius r1, and in front and
behind the predator within the disc r1 < r < 2r1.

the location of the other groups and move towards them. Let xj,i

denote the location of the nearest node in the other fragment. The
velocity vector is then set as:

vbk,i+1 =

{
0, if no other group is found

u(xj,i − xk,i), otherwise
(10)

Finally, the nodes want to move in synchrony to confuse predators
and would like to avoid collisions by maintaining a safe distance r
from their neighbors. This can be achieved if the node updates its
velocity vector as follows [13]:

vck,i+1 = vgk,i + γδk,i (11)

where γ is a nonnegative scalar and δk,i deals with collision avoid-
ance, which is given by

δk,i =
1

|Nk| − 1

∑
j∈Nk\{k}

(‖xj,i − xk,i‖ − r) u(xj,i−xk,i) (12)

Expression (11) also incorporates the term vgk,i, which refers to a
local estimate for the velocity of the center gravity of the network
and is estimated in a distributed manner as follows:

ϕk,i = (1− μv
k)v

g
k,i−1 + μv

kvk,i

vgk,i =
∑
j∈Nk

av
j,kϕj,i

(13)

According to the criteria (8)-(13), we propose the following mech-
anism by which vk,i+1 can be set by node k; this mechanism is an
extension of the one proposed in [13] where we are now adding a
new component vak,i+1 to help avoid predators as defined by (8):

vk,i+1 = λ(αvak,i+1 + βvbk,i+1) + (1− λ)vgk,i + γδk,i (14)

where {λ, α, β, γ} are non-negative weighting factors. We bound
the maximum speed of nodes by vmax so that the magnitude of
vk,i+1 will be scaled to vmax if it is larger than vmax.

4. MOTION CONTROL MECHANISM FOR PREDATORS

Now, consider M predators that would like to hunt the fish nodes
in the network cooperatively. The location of predator l at time i is
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Fig. 3. State transition diagram of the motion model of predators.

denoted by xp
l,i. The predators coordinate their behavior in order to

improve their hunting efficiency. The motion of the predators is in-
fluenced by two quantities related to the network: the location of the
center gravity of the network and the location of a node of interest.
Let xg

l,i and wl,i denote the estimated locations of the network center
and the node of interest by predator l at time i. Predators coopera-
tively estimate xg

l,i by using (5). However, since predators spread
around the network, they have different nodes of interest. Therefore,
each predator has to track wl,i independently by

wl,i = wl,i−1 + νuT
l,i[dl(i)− ul,i(wl,i−1 − xp

l,i)] (15)

where ν is a step size, and ul,i and dl(i) are the measured direction
and distance of the node, respectively, at predator l and time i.

4.1. State Machine Model

We model the behavior of predators as a finite-state machine with
four possible states, S0 to S3. The state transition diagram is de-
picted in Fig. 3. Predator l initially enters state S0 and moves to-
wards the network (i.e., fish school) until it is close to the network,
say, ‖xp

l,i−xg
l,i‖ < r2. Then the predator moves to state S1 and tries

to encircle the network by moving around it. The predator monitors
the node that is within a distance rs and is the farthest from the net-
work center. If the node is far away from the network center (i.e.,
an outlier), say, ‖wl,i − xg

l,i‖ > re, the predator enters state S2

and drives the node back until it is within the distance re from the
network center. After that, the predator may go back to state S1 or
S0 depending on the distance to the network center. If the distance
is greater than 1.5r2, the predator moves to state S0; otherwise it
moves to state S1. Similarly, the predator in state S1 may transit to
state S0 if it is far away from the center, i.e., ‖xp

l,i − xg
l,i‖ > 1.5r2.

Finally, after predators have encircled the network, predators take
turns to attack the network. We assume that only one predator, say
predator 1, will launch an attack to focus on the agile adjustment of
network patterns in the network and predators.

4.2. State S0: Chase

Chasing happens when the distance to the network center is large.
To get closer to the network, the predator sets the velocity vector
towards the network center, i.e.,

vdl,i+1 = u(xg
l,i − xp

l,i) (16)

4.3. State S1: Encircle

In S1, predators would like to encircle the network within a disc with
the origin at the network center and radius re by moving around the
network center. In addition, predators would like to distribute evenly
around the network in order to make it difficult for the nodes in the
network to escape. To avoid staying together, predator l first checks
if there are other predators within distance rs. If yes, say predator

Fig. 4. Location relations between the network and predators.

j, predator l then determines the direction of predator j by the inner
product (xp

j,i − xg
l,i)

T (xp
l,i − xg

l,i)
⊥. We say predator j lies in the

right semicircle of predator l if the inner product is greater than zero
(see Fig. 4). Predator l sets the velocity vector towards the empty
semicircle; otherwise, predator l randomly chooses a direction, i.e.,

vdl,i+1 = c2 · u[(xp
l,i − xg

l,i)
⊥] (17)

where c2 determines the direction and is equal to 1 or −1 (i.e., coun-
terclockwise or clockwise). If the right semicircle is empty, c2 = 1.
Similarly, c2 = −1 if the left semicircle is empty. Otherwise, c2 is
equally likely to be −1 or 1.

4.4. State S2: Trap

Outliers occur when they try to escape from an attack. To push the
outlier back, the predator moves to the front of the outlier and blocks
it. However, if the predator directly approaches the outlier, it may
move further away to escape from the predator. To avoid this situ-
ation, the predator keeps a certain distance to the outlier and moves
around the outlier until it blocks the way out. To do so, the predator
sets the velocity vector as follows:

vdl,i+1 =

⎧⎪⎨
⎪⎩
u(wl,i − xp

l,i) if ‖wl,i − xp
l,i‖ > 1.5r3

−u(wl,i − xp
l,i) if ‖wl,i − xp

l,i‖ < r3

c3 · u[(wl,i − xp
l,i)

⊥] otherwise

(18)

where c3 is equal to 1 if the inner product (wl,i−xg
l,i)

T (xp
l,i−wl,i)

⊥

is greater than zero; otherwise, c3 is equal to −1.

4.5. State S3: Attack

When attacking, the predator tracks the location and velocity of the
nearest node and moves towards the predicted location of that node.
That is, the velocity vector of the predator is updated as:

vdl,i+1 = u(wl,i +�t · vl,i − xp
k,i) (19)

where vl,i is the estimated velocity of the node by predator l at time
i and is estimated in the same way as (9).

Predators also avoid collisions and will move apart when they
are too close. The final adjustment of the velocity and location vec-
tors by predator l is as follows:

vpl,i+1 = λpvdl,i+1 + γpδpl,i

xp
l,i+1 = xp

l,i +�t · vpl,i+1

(20)
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Fig. 5. A simulation showing how predators coordinate their behav-
ior to encircle a fish school. The behavior of the fish school and the
predators are modeled using diffusion adaptation over networks.

where {λp, γp} are non-negative weighting scalars and

δpl,i =
1

|Ml| − 1

∑
j∈Ml\{k}

(
rp − ‖xp

l,i − xp
j,i‖

)
u(xp

l,i − xp
j,i)

(21)
In (21), Ml is a set of predators within distance rp, i.e., Ml = {j :
‖xp

l,i − xp
j,i‖ < rp}. Moreover, the speed of predators is bounded

by vpmax.

5. SIMULATION RESULTS

In this section, we simulate the motion of 50 nodes and 6 predators.
The simulation parameters are set as follows. The unit length is
the body length of a node (e.g., body length of a fish). All step
sizes are set to 0.5. The combination coefficients are set to al,k =
av
l,k = 1/|Nk,i| if l ∈ Nk,i. For velocity control, the coefficients are

(λ, α, β, γ) = (0.5, 1, 2, 1) and (λp, γp) = (2.4, 1). The maximum
speeds are vmax = 2 and vpmax = 2.4, and the time duration is
�t = 0.5 sec. In addition, the distance parameters are set to r = 3,
rp = 5, rs = 30, re = 15 and (r1, r2, r3) = (10, 20, 15).

We illustrate the maneuver of a mobile network in R
2 over time

in Fig. 5 and 6. The blue symbols “•” and “−” indicate the locations
and moving directions of the nodes, respectively. The red symbols
with bigger sizes represent predators. Figure 5 shows that predators
encircle the network in the beginning and then one predator launches
an attack. In Fig. 6, we observe the predators trapping the network
while one predator is attacking. The simulation results emulate the
behavior of fish schools in nature.

6. CONCLUSIONS

In this paper, we proposed a diffusion adaptation model to emulate
the interactive behavior between fish schools and predators. The
algorithm is implemented in a fully distributed and adaptive man-
ner. The algorithm helps explain how fish schools avoid attacks from
predators and how predators cooperatively hunt prey.
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