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ABSTRACT

Inspired by bacterial motility, we propose an algorithm for adapta-
tion over networks with mobile nodes. The nodes have limited abil-
ities and they are allowed to cooperate with their neighbors to opti-
mize a common objective function. In contrast to traditional adapta-
tion formulations, an important consideration in this work is the fact
that the nodes do not know the form of the cost function beforehand.
The nodes can only sense variations in the values of the objective
function as they diffuse through the space, such as sensing the varia-
tion in the concentration of nutrients in the environment. We propose
a technique for the nodes to pick the search vector as a linear com-
bination of the neighbors’ last steps, by attempting to maximize the
nutritional gradient. The procedure enables information to flow from
“information-rich” nodes to the other nodes.

Index Terms— Adaptive network, cooperative optimization,
bacterial motility, diffusion.

1. INTRODUCTION

Bacteria are single-cell microscopic organisms. They survive by for-
aging for nutrients in the environment in a manner that maximizes
their energy intake per unit time [1]. During the foraging process,
bacteria exhibit directed movement in response to chemical stimuli
in a behavior known as “chemotaxis” [2].

Bacteria with flagella have two distinct modes of movement:
running and tumbling. When, by chance, a bacterium moves up a
spatial gradient of a chemical attractant, e.g., nutrients, it runs in
that direction at a larger step. Otherwise, it moves the other way
and tumbles around, i.e., its direction of motion changes randomly
without much translational movement. The bias in the random walk
ultimately enables the bacteria to move up gradient directions. Stud-
ies on impulsive stimuli indicate that bacteria collect gradient in-
formation by comparing the concentration observed over the past 1
second with the concentration observed over the previous 3 second
and respond to the difference [3]. When a bacterium is away from
the nutrition source, the concentration of nutrition will fall below a
threshold that the bacteria can detect. To extend their sensing ability,
the bacteria use small molecules for extra- and intracellular signaling
to act in a coordinated manner [4].

Motivated by these observations on bacterial motility, and by
our earlier study in [4], we propose an algorithm for adaptation over
networks of nodes with limited sensing abilities. The nodes coop-
erate locally with their neighbors to optimize a common objective
function. In contrast to conventional adaptation formulations, an im-
portant consideration in this work is the fact the nodes do not know
the form of the cost function beforehand. Instead, the nodes can
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only sense variations in the values of the cost function. The analogy
with bacteria motility is as follows. The bacteria play the role of the
nodes and the concentration of nutrients in the environment plays
the role of the objective function. The nodes wish to determine the
location of the peak of the concentration profile. The nodes, how-
ever, do not know the shape of the concentration profile. Still, they
can sense variations in the concentration as they move around. We
shall propose a technique for each node to pick its search vector as a
linear combination of the neighbors’ last steps in a manner that will
help maximize the nutritional gradient. The resulting procedure will
enable information to flow from the “information-rich” nodes to the
other nodes. Simulation results illustrate how the procedure helps
extend the sensing ability of each node in the network.

2. PROBLEM FORMULATION

Consider a collection of N nodes, each of which wants to maximize
an objective function J(w) over an M -dimensional column vector w
and determine the optimal wo. One obvious way to accomplish this
task is by means of a steepest-descent algorithm, whereby each node
k independently adapts its local estimate, wk,i−1, at time i−1 along
the direction of the the gradient vector, ∇J(w), evaluated at wk,i−1.
In an adaptive implementation, the gradient vector is substituted by
an instantaneous approximation computed from the data [5]. Alter-
natively, the nodes may cooperate with each other through a diffusive
process [6–11] to accomplish the same task through a fully decen-
tralized solution to the problem. The performance of these adaptive
diffusion algorithms has been studied in detail in [6–11].

The above two implementations, whether distributed [6–11] or
non-cooperative [5], rely on the basic assumption that the form of
the cost function, J(w), is known beforehand by all nodes. This
assumption underlies the derivation of most adaptation algorithms.
When the form of J(w) is known, the form of its gradient vector
is also known and instantaneous approximations for it can therefore
be computed. If we re-examine the example of bacteria foraging
for food, the density of the nutrients in the space is not known to
the bacteria. The bacteria, however, can sense the concentration of
nutrients at their locations. A useful problem would be to show how
these localized measurements can be combined together through an
adaptive diffusive process to enable the nodes to converge to the peak
of the concentration function.

Assume that at time i − 1, each node k has access to measure-
ments of the concentration (or cost) function at times i−1 and i−2.
These measurements determine the local error signal:

ek(i) = J(wk,i−1) − J(wk,i−2) (1)

which can be related to the gradient vector (through a first-order Tay-
lor series expansion):

ek(i) ≈ [∇J(wk,i−2)]
T (wk,i−1 − wk,i−2) (2)
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Introduce the row vector

uT
k,i � wk,i−1 − wk,i−2 (3)

and note that it denotes the direction of motion from wk,i−1 to
wk,i−2 (assuming we interpret the successive wk,i as location vec-
tors). In order to move from wk,i−1 to wk,i, the node needs to
estimate the gradient vector at wk,i−1. Assuming updates with
small step-sizes, we can approximate ∇J(wk,i−1)≈∇J(wk,i−2).
In this way, and using Eq. (2), node k estimates that the desired
gradient direction ∇J(wk,i−1) essentially lies in the plane:

Pk,i = {∇J(wk,i−1) : uk,i∇J(wk,i−1) ≈ ek(i)}. (4)

The objective for each node becomes that of determining a good
estimate for this gradient vector, say, p, in order to update wk,i−1 to
wk,i as

wk,i = wk,i−1 + μp (5)

where μ is the step size parameter. The choice of p will be deter-
mined through cooperation with the neighboring nodes as we pro-
ceed to explain.

3. COOPERATIVE OPTIMIZATION

3.1. Combination Coefficients

Let us assume that at time i − 1 each node k can share with its
neighbors information about the set Pk,i, or equivalently, the vector
uk,i and the signal ek(i). We define the neighborhood of node k at
time i − 1 as follows:

Nk,i−1 = {� : ‖w�,i−1 − wk,i−1‖ ≤ R0} (6)

where R0 is some radius value. Notice that Nk,i−1 also in-
cludes node k. Then the information available to node k is
{u�,i, e�(i)}�∈Nk,i−1 . Node k determines the search vector p as
a linear combination of the motion directions shared by its neigh-
bors, namely,

p =

|Nk,i−1|∑
�=1

ak�u
T
�,i (7)

where | · | denotes the cardinality of a set at time i−1. The combina-
tion coefficients are selected as follows. Through a first-order Taylor
series expansion, we have

J(wk,i) − J(wk,i−1) ≈ [∇J(wk,i−1)]
T (wk,i − wk,i−1). (8)

Substituting (5) into (8) and using (7), we get

J(wk,i) − J(wk,i−1) ≈ μ ·
|Nk,i−1|∑

�=1

ak�u�,i∇J(wk,i−1) (9)

When the neighbors are close to each other, the gradient vectors at
their locations are approximately similar so that

∇J(w�,i−1) ≈ ∇J(wk,i−1), � = 1, 2, . . . , |Nk,i−1|. (10)

Then, (9) becomes

J(wk,i) − J(wk,i−1) ≈ μ ·
|Nk,i−1|∑

�=1

ak�e�(i) (11)

This relation suggests a criterion for selecting the combination co-
efficients {ak�} in order to maximize the increment in J(w) as w
goes from wk,i−1 to wk,i. Though our ultimate goal is to find w
that maximizes J(w), we cannot do this directly because we do not
know its explicit expression. However, we can expect that, by se-
quentially updating the estimate of w so that, at each iteration, J(w)
is increased by a maximum amount, the estimate is able to approach
the peak point of J(w). Specifically, introduce the column vectors

a =
[
ak1 ak2 · · · ak|Nk,i−1|

]T
(12)

e =
[
e1(i) e2(i) · · · e|Nk,i−1|(i)

]T
(13)

Then, node k picks its combination coefficients by solving:

max eT a

s.t. aT a ≤ 1 and ak� ≥ 0

We limit the norm of the vector a to one to avoid the possibility of
an unbounded solution. The above optimization is equivalent to

min − eT a (14)

s.t. aT a ≤ 1 and ak� ≥ 0

Using Lagrange multipliers, we introduce the function:

L = −eT a + γ(aT a − 1) − λT a (15)

where

λ =
[
λk1 λk2 · · · λk|Nk,i−1|

]
. (16)

The optimal solution a is the unique solution to the following
Karush-Kuhn-Tucker (KKT) conditions [12]:

∇aL = −e + 2γa − λ = 0 (17)

aT a ≤ 1, a � 0 (18)

λ � 0, γ ≥ 0 (19)

λk�ak� = 0, � = 1, 2, . . . , |Nk,i−1| (20)

γ · [aT a − 1] = 0 (21)

From (17) we have

2γak� = e� + λk�. (22)

Multiplying (22) by λk� and using (20), we get

0 = λk�(e� + λk�) (23)

This means that either λk� = 0 or λk� = −e� for each � =
1, . . . , |Nk,i−1|. Let us examine the possibilities:

1. e� > 0:
Then λk� = 0. Otherwise, λk� = −e� < 0, contradicting
(19). Substituting λk� = 0 into (22), we get 2γak� = e� > 0.
Therefore, γ > 0 and ak� = e�/2γ.

2. e� < 0:
Then λk� = −e�. Otherwise, λk� = 0 and (22) becomes
2γak� = e� < 0, contradicting γ ≥ 0 in (19) and ak� ≥ 0 in
(18). Using λk� = −e� > 0 in (20) gives ak� = 0.

3. e� = 0:
Then λk� = 0. Eq. (22) implies either γ = 0 or ak� = 0.
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Running Mode Tumbling Mode

Fig. 1. Bacterial motion model with two modes of locomotion: running and tumbling.

We therefore see that if e has positive components, then γ > 0 and

ak� =
1

2γ
I(e�)e� ⇒ ‖a‖2 =

1

4γ2

⎡
⎣

|Nk,i−1|∑
�=1

I(e�)e
2
�

⎤
⎦ (24)

where I(x) is the indicator function: it is equal to one when x > 0
and zero otherwise. Using γ > 0 in (21), and setting ‖a‖2 = 1, we
have

γ =
1

2

√√√√
|Nk,i−1|∑

�=1

I(e�)e2
� . (25)

When e = 0, then from (14), we know that −eT a = 0 and ak� can
be any value that satisfies the constraints. We set ak� = 0 in this
case. In summary, the general expression for ak� is

ak�(i) =

⎧⎪⎨
⎪⎩

I(e�(i))e�(i)√∑|Nk,i−1|
�=1 I(e�(i))e2

�(i)

e�(i) 	= 0

0 e�(i) = 0

(26)

Eq. (26) implies that when neighbor � moved in the wrong direc-
tion resulting in e�(i)≤0, its direction u�,i is ignored. On the other
hand, nodes moving in the right direction will have their motion di-
rections averaged in proportion to their error signals, e�(i). When
implementing the algorithm, we add a random perturbation to (5) to
model the random perturbation component that occurs in bacterial
motility:

wk,i = wk,i−1 + μp + bk,i (27)

3.2. Reliability of Error Signal

By examining (11), each individual term ak�e�(i) inside the sum is
the increment gained by assigning ak� to u�,i. In practice, however,
we do not know the {e�(i)}; instead we have access to noisy mea-
surements of these signals:

y�(i) = e�(i) + v�(i) (28)

where v�(i) is the measurement noise process modeled as indepen-
dent and identically distributed Gaussian random process with mean
zero and power σ2

v . We may optimize (14) by replacing e with

y =
[
y1(i) y2(i) · · · y|Nk,i−1|(i)

]T
(29)

However, we need to account for the effect of noise on performance.
Let

SNR� � E{|e�(i)|2}
E{|v�(i)|2} =

r2
�

σ2
v

(30)

When the SNR at node � is sufficiently high, then y�(i) is a good
estimate for e�(i) and the corresponding increment ak�y�(i) due to
u�,i will be a reliable estimate for ak�e�(i). Based on this argument,
we should place larger weights on measurements y�(i) with higher
SNRs. We therefore consider the following criterion. Node k would
select the combination coefficients {ak�} such that the SNR that re-
sults from using the combination is larger than the SNR that results
from using only its update direction, uk,i.

SNR �
E

∣∣∣∑|Nk,i−1|
�=1 ak�e�(i)

∣∣∣
2

E |ak�v�(i)|2
=

∑|Nk,i−1|
�=1 a2

k�r
2
�∑|Nk,i−1|

�=1 a2
k�σ

2
v

≥ r2
k

σ2
v

(31)

⇐⇒
|Nk,i−1|∑

�=1

a2
k�(r

2
� − r2

k) ≥ 0 (32)

If the variances {r2
�} are available, then we could add (32) as a

new constraint to problem (14). In practice, however, the {r2
�} are

usually unknown. Instead, it is easier to obtain information about
their ordering (i.e., which neighbors have more or less noisy data
or which neighbors are more or less confident about their measure-
ments). Then node k would ignore measurements from neighbors
whose data are noisier than node k. In this way, we can solve the
same optimization problem (14) with the vector e replaced by a new
vector containing only the measurements y�(i) from the nodes that
are more reliable than node k.

The remaining problem is to construct a reliability measure {r2
�}

that can capture well the ordering of the nodes’ reliability. One in-
tuition is that the closer the node is to the optimal location wo, the
more reliable its information is. However, the nodes are generally
unable to access their distance to wo. Thus we propose to use:

r2
k =

⎧⎨
⎩

1, J̃(wk,i) > JT

max
�∈N�,i−1,��=k

1

2
r2

� , otherwise
(33)

where J̃(wk,i) is the noisy measurement of J(wk,i), and JT is a
threshold. This method actually corresponds to using dynamic pro-
gramming to find a shortest path towards the node with reliability 1.
And r2

k measures the distance between the nearest node with relia-
bility 1 and node k. Actually, − log2 r2

k is the minimum number of
hops between them.

3.3. Application to Bacterial Motility

Since bacteria have limited sensing ability, they cannot evaluate
ek(i) as in (1). Instead, we assume that they are only aware of
its sign; that is, we assume that the nodes are only aware whether
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the concentration (cost) function is increasing or decreasing while
moving from wk,i−2 to wk,i−1. Then it is reasonable to simplify
ak� in (26) into the following form:

ak�(i) =

⎧⎪⎨
⎪⎩

I(e�(i))√∑|Nk,i−1|
�=1 I(e�(i))

e�(i) 	= 0

0 e�(i) = 0

(34)

Then we update the position of bacterium k according to (27).
From (34), we see that if a neighbor of node k (including k)

moved in the wrong direction during the last step (e�(i)≤0), then
node k will ignore its direction uk,i in (7). For the neighbors with
e�(i)>0, node k will average their directions using equal weights.
When none of the neighbors (including k) are in the right direction,
then node k will tumble, i.e., will set p = 0. For the special case of
non-cooperation, (34) is reduced to ak�(i) = I[e�(i)] and p becomes

p = I[e�(i)]
uk,i

‖uk,i‖ . (35)

It follows that when the nutritional concentration increases during
the last step, the bacterium will run in that direction. Otherwise, it
will stop running, and influenced by the random perturbation bk,i

shown in (27), it will tumble. Then, the bacterium clears its memory
of the previous running direction, and searches for a new running
direction, along which J(w) increases. The analogy between the
above formulation and bacterial motility is illustrated in Fig. 1; more
details about bacteria motility can be found in [4]. The cost function
J(w) corresponds to the density of nutrition. If a bacterium senses
that the value of J(w) is increasing as it moves from wk,i−1 to wk,i,
it will continue to move in a running mode along the direction of
uk,i. Otherwise, the bacterium will stop running, and switch to the
tumbling mode.

4. SIMULATION RESULTS

In this section, we use the algorithm to simulate bacteria motility.
The source is placed at the coordinates (40, 40); it generates a nu-
trition field in the shape of a two-dimensional Gaussian distribution,
as shown in Fig. 2. The peak value of the nutritional density is
15. At the beginning, a total of 500 bacteria are randomly and
uniformly distributed over a 40 × 40 rectangular region centered
at (20, 20). Their random perturbation bk,i is modeled as an i.i.d.
two-dimensional Guassian random variable with zero mean and 0.1
standard deviation. The step size μ is 0.5. The radius of the neigh-
borhood Nk,i for node k is R0 = 5. And the variance σ2

v for the
measurement noise vn

� (i) is 0.1.
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Fig. 2. Distribution of nutrients in the environment.
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Fig. 3. Average nutrition per bacterium vs. number of iterations.

Fig. 3 shows the average nutrition density per bacterium defined

as 1
N

∑N

k=1
J(wk,i) against i. The methods we compare are op-

timal search with ak� given by (26), bacterial motility whose ak�

is given by (34) and the noncooperative case in (35). The result is
obtained by averaging 100 independent realizations. We see that
methods (26) and (34) converge fast. Both methods can reach their
steady state within 200 steps, and the performance loss of the bacte-
rial motility method is not large. Furthermore, without cooperation,
only the bacteria close to the food source are able to reach nutrition.

5. CONCLUSION

We proposed a dynamic adaptive network based on bacterial motil-
ity. Our results show that cooperation can extend the sensing ability
of each node as long as the direction of information flow is oriented
from the “information-rich” nodes towards the other nodes. As a
result, the nodes without local information can still learn from the
neighbors, and the network can swarm towards the the nutritional
sources.
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