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ABSTRACT
We introduce an incremental cooperation mode into the framework
of adaptive networks (AN). The method applies to generic topolo-
gies and avoids the need to establish a Hamiltonian cycle over the
network, generalizing the original incremental mode, while keeping
nearly the same mean-square performance, as illustrated by the sim-
ulations. We motivate the new mode by relying on an LMS rule at
the nodes, and mean-square analysis is provided.

Index Terms— Adaptive filters, distributed estimation, adaptive
networks, incremental methods, cooperative systems.

1. INTRODUCTION

An adaptive network (AN) is a collection of N adaptive nodes that
observe space-time data and collaborate, according to some cooper-
ation protocol, in order to estimate parameters related to some event
of interest.

Several ANs have been proposed based on the incremental mode
of cooperation [1, 2, 3, 4, 5]. The one main advantage is the ability
to reduce the required energy and communication resources to im-
plement distributed algorithms. The one major drawback is the need
to establish a Hamiltonian cycle over the network, which is an NP-
complete problem, and is not guaranteed to exist in the general case.
In this work we relax this requirement by defining a random cooper-
ation walk over the nodes. In the context of ANs, this gives rise to
a new probabilistic incremental protocol defined by a Markov chain
(MC).

We review the steps necessary to embed the protocol in adaptive
networks and revisit and extend available incremental algorithms [1,
2, 5], illustrating that both standard incremental and its probabilistic
counterpart yield nearly the same performance in the mean-square
sense, suggesting that Hamiltonian cycles may be avoided.

2. RELAXING THE INCREMENTAL PROTOCOL

In order to estimate an unknown vector of parameters wo, incremen-
tal protocols operate sequentially over a pre-established N -steps co-
operation cycle that visits all the nodes. Node k observes space-time
realizations {dk(i), uk,i} of the random data {dk, uk}, where dk is
a scalar measurement and uk is a 1 × M row regressor vector, and

updates an estimate ψ
(i)
k−1 of wo received from node k − 1 using its

learning rule. Subsequently, the estimate ψ
(i)
k at node k is passed to

the next node k + 1, and so on.
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Fig. 1. The probability mass function induced over a neighborhood.

In this work we relax the original cyclic incremental protocol
[1, 2] by (a) removing the requirement of a Hamiltonian cycle: nodes
decide, locally and on-the-fly, which node comes next in the coop-
eration effort; and (b) nodes are allowed to be revisited within an
N -steps slot, but only one node is communicated with at a time.
Cooperation is implemented as a random walk over the network of
nodes. For instance, assume the process starts at node k; the next
node � is drawn randomly from a probability mass function (pmf)
defined over node k’s neighborhood, � ← pmf

(Nk(i)
)

(see Fig. 1),
and it generates a new estimate ψ� according to the local learning
rule. The cooperation then evolves sequentially and randomly over
the available network topology.

The idea of defining random walks on graphs is not new [6]. In
fact, the protocol we present here is a distributed instance of ran-
domized algorithms. It has been studied in [7, 8] in the context of
distributed deterministic optimization subject to stochastic perturba-
tions. Such protocol is also related to probabilistic diffusion [9] and
gossip protocols [10]. Here we motivate a new distributed adap-
tive algorithm that intertwines two stochastic processes: the learning
process at the node level, also contaminated by background stochas-
tic noise, and the underlying probabilistic incremental protocol, in
charge of cooperation.

Considering that the sequence of cooperating nodes is defined
randomly, some natural questions are:

1. Will the nodes be regularly visited?

2. What is the expected visit time for a specific node?

3. Does the learning evolution depend on the initial node?

4. How is the network learning impacted in the mean-square
sense?

Such questions can be answered by examining how a Markov chain
arises from the probabilistic incremental protocol.
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3. FROM THE NETWORK TOPOLOGY TO A MARKOV
CHAIN

Let n(i) denote the node indexing (stochastic) process, generated as
described in the previous section. For i ≥ 0, we have that n(i) ∈
{1, 2, . . . , N} Δ

= V , where V is the node set. Any realization ni
Δ
=

{n(j), 0 ≤ j ≤ i} defines a cooperation trajectory over the network
that is governed by the joint pmf:

P
(
n(i) = n(i), . . . , n(1) = n(1), n(0) = n(0)

)
(1)

or simply P
(
n(i), . . . , n(1), n(0)

) Δ
= P

(
ni

)
. We have

P
(
ni

)
= P

(
n(i)

∣∣ni−1

)
P

(
ni−1

)
(2)

= P
(
n(i)

∣∣ni−1

)
P

(
n(i − 1)

∣∣ni−2

)
P

(
ni−2

)
= P

(
n(i)

∣∣ni−1

) · · ·P (
n(2)

∣∣n1

)
P

(
n(1)

∣∣n0

)
P

(
n0

)
where P

(
n0

)
= P

(
n(0)

)
. In other words, the probability that we

are at a specific node at time i depends on the earlier trajectory fol-
lowed across the network. If each node assigns its successor inde-
pendently from previous assignments, then (2) reduces to

P
(
ni) = P

(
n(i)

∣∣n(i − 1)
) · · ·P (

n(2)
∣∣n(1)

)
P

(
n(0)

)
(3)

and n(i) becomes a Markov process. A Markov chain (MC) with
N states is induced over the network topology, and P

(
n(i)

∣∣n(i −
1)

)
is the transition probability from node n(i) to node n(i − 1),

as depicted in Fig.2. An MC is completely described by an initial
probability distribution, defined as the 1 × N row vector

π0 = [π0,k]
Δ
= {P (

n(0) = k
)
; k = 1, . . . , N} (4)

and the N × N transition probability matrix P , defined as

P = [pk�] , pk�
Δ
= P

(
n(i) = �|n(i − 1) = k

)
(5)

for k, � = 1, . . . , N . Note that the standard incremental protocol be-
comes a special case of the novel protocol [6]. As the chain evolves,
π0 is mixed into the chain marginal probability distribution

πi = [πi,k]
Δ
= {P (

n(i) = k
)
; k = 1, . . . , N} (6)

which represents the probability of the chain being at one of its N
states at time i. Its evolution depends on P as follows. Note that

πi,k =
[
πi

]
k

=
∑
�∈V

P
(
n(i − 1) = �

)
p�k

=
∑
�∈V

[
πi−1

]
�

[P]
�k

=
[
πi−1P

]
k

(7)

for k = 1, . . . , N . Relation (7) yields

πi = πi−1P = π0Pi
(8)

where Pi is the ith power of P and its k� entry represents the proba-
bility of going from node k to node � in exact i steps. The statistical
evolution of a MC depends on the structure of P , so that different
chain classes are possible. An MC induced on a connected graph is
recurrent, i.e., all states are visited infinitely often [11]. A recurrent
chain can be either periodic, when the states can be grouped into
subclasses periodically visited, or aperiodic, when only one entire
class exists, with no periodicity (or the period is one). A recurrent

��

��

� ��

Fig. 2. Network topology (left) and the induced Markov chain
(right).

aperiodic MC is ergodic [11], and has the convenient property of
converging to a unique stationary chain distribution [12]

π
Δ
= lim

i→∞
πi (9)

regardless of the initial distribution π0. Ultimately it means that,
in steady-state, the probability of being at a specific state does not
depend on the state the chain was at. By allowing self-loops in the
protocol (a node can visit itself)1, an ergodic MC is induced on the
network [6], and a unique stationary distribution π is reached, given
by the solution of the equation

π = πP (10)

that is, π is the left eigenvector of P corresponding to the eigenvalue
λ = 1. In fact, it can be shown that [11]

lim
i→∞

Pi = qπ (11)

where q = col{1, . . . , 1} is N × 1. Furthermore, in the long run,
the node k’s mean recurrence time tk, i.e., given that the process is
at node k, the expected time to return to it is given by [12]

tk =
1

[π]k
(12)

From (12) we see that it would be interesting to have π close to
a uniform distribution, in which case the probabilistic incremental
protocol would behave, on average, just like the standard incremen-
tal mode: each node is visited once within N iterations. Therefore,
we are interested in designing P so that a convenient π is achieved.
Each node has only access to its neighbors, so P must be specified
row-wise, i.e., locally at the nodes, via the pmf’s defined over Nk.

Now, consider two distributions over Nk: uniform, where [P]k� =
1

|Nk| , and Metropolis where

⎧⎨
⎩

pk� = 1/ max(degk, deg�) if k �= � are linked
pk� = 0 if k and � are not linked
pkk = 1 − ∑

�∈Nk/k pk� for k = �
(13)

and degn is node n’s degree. A stationary distribution π must be
a solution to (10). Thus, if we can find a vector that is a solution
to (10), then this vector is the unique stationary distribution [11].
If we employ the Metropolis rule (13), it is easy to check that the
corresponding P will be doubly stochastic, and qT (see (11)) is its
unique left eigenvector associated with the unit eigenvalue, that is

qTP = qT ; therefore ( qT

N
)P = 1 · (qT /N) and the chain reaches a

uniform distribution π = qT /N over the possible N states. On the

1If we remove self-loops, the spatial coverage may be accelerated [6],
[11]. However, it may give rise to periodicity in the chain evolution.
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Fig. 3. MC’s histogram (top) and node processes (bottom) for
Metropolis rule.
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Fig. 4. Network topology and signals parameters.

other hand, if we select the local pmf uniformly distributed over Nk,
the chain stationary distribution can be shown to be [6]

[π]k =
degk

2|E| + N
(14)

where |E| is the number of links in the network. In other words,
nodes with high degree will be privileged.

Figure 3 compares the probabilistic incremental protocol and its
standard counterpart in terms of spatial coverage for a Metropolis
rule2. The top plot shows the statistics (theory and histogram) after
3000 iterations over the network topology depicted in the left plot
of Fig. 4. The bottom plot of Fig. 3 shows a single cooperation
trajectory.

4. INCREMENTAL LMS REVISITED

We embed an LMS learning rule at the nodes, and consider the
original distributed incremental LMS algorithm [1], [4] except that
the node assignment is now governed by the node indexing process
{n(i)}. We skip the swift derivations and present just the algo-
rithm’s recursion

ψn(i) = ψn(i−1) + μn(i)u
∗
n(i)(dn(i) − un(i)ψn(i−1)) (15)

Note that the goal is to remove the Hamiltonian cycle while main-
taining, if possible, mean-square performance. We use for evalua-
tion the mean-square deviation (MSD), and the mean-square error
(MSE), defined as follows

MSD(i) = E‖wo − ψn(i−1)‖2
(16)

MSE(i) = E|dn(i) − un(i)ψn(i−1)|2 (17)
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Fig. 5. Top: MSD. Bottom: MSE.

where the expectations are carried out over the learning process and
the cooperation trajectory.

Figure 4 shows the settings for Example 1, where signals are
Gaussian with regressor signal power and background noise power
given by σ2

u,k and σ2
v,k = 10−3, respectively, and correlation in-

dex given by αk [1]. Both instances, incremental and probabilistic,
have been simulated, and their mean-square convergence is nearly
the same, as shown in Fig. 5. Note also the smoothing effect aris-
ing in the mean-square error (MSE) from the natural shuffling effect
of the Markov sampling across the nodes. The probabilistic incre-
mental protocol can be also extended to the aggregated gradient case
[13].

5. STEADY-STATE ANALYSIS

Mean-square analysis for the proposed protocol is challenging. Here
we provide a simplified version; it is an extension of the work in
[1, 4, 5], with the added intricacy of the random cooperation proto-
col. We assume the data uk arise from a circular Gaussian distribu-
tion and define the following error quantities: ψ̃n(i) = wo − ψn(i)

(weight error vector at time i), ea,n(i) = un(i)ψ̃n(i−1) (a priori er-

ror), ep,n(i) = un(i)ψ̃n(i) (a posteriori error), as well as the corre-

sponding weighted errors eΣ
a,n(i) = un(i)Σψ̃n(i−1) and eΣ

p,n(i) =

un(i)Σψ̃n(i), for some Hermitian matrix Σ > 0. By adopting the

usual space-time data model dk(i) = uk,iw
o + vk(i) and manipu-

lating the algorithm’s rule (15), we arrive at the following space-time
weighted energy conservation relation [1, 2, 14]:

‖ψ̃n(i)‖2
Σ +

|eΣ
a,n(i)|2

‖un(i)‖2
Σ

= ‖ψ̃n(i−1)‖2
Σ +

|eΣ
p,n(i)|2

‖un(i)‖2
Σ

(18)

Now, for some node k, let Ru,k = Eu∗
kuk = TkΛkT ∗

k , where
Tk is unitary and Λk is diagonal and contains the eigenvalues of

Ru,k. Defining the transformed error quantities ψn(i) = T ∗
n(i)ψ̃n(i),

ψn(i−1) = T ∗
n(i)ψ̃n(i−1), un(i) = un(i)Tn(i), Σn(i) = T ∗

n(i)ΣTn(i),
and via the diagonal notation [1, 14], we arrive at the following rela-
tion

E‖ψn(i)‖2
σn(i)

= E‖ψn(i−1)‖2
F n(i)σn(i)

+ gn(i)σn(i) (19)

where F n(i) = I − 2μn(i)Λn(i) + γμ2
n(i)Λ

2
n(i) + μ2

n(i)λn(i)λ
T
n(i),

with γ = 1 for complex data and γ = 2 for real data, gn(i) =

μ2
n(i)σ

2
v,n(i)λ

T
n(i) is a row vector, with λn(i) = diag{Λn(i)}, and

2For comparison, we assume it is possible, e.g., via multihop, to establish
a Hamiltonian cycle.

3516

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on July 05,2010 at 16:11:33 UTC from IEEE Xplore.  Restrictions apply. 



σn(i) = diag{Σn(i)} [1, 14]. In steady-state, the chain reaches a
stationary distribution π, and the indexing process approaches a ran-
dom process �, i.e., n(i) → � with � ∼ π (i.e., � is distributed
according to π). Due to the shuffling and smoothing effect of the
protocol, we assume that, in steady-state, the estimates ψ� delivered
by the nodes are statistically similar, so that the transformed weight
error vector becomes ψ� → ψ. Taking the expectation over � ∈ V
in (19) results in:∑

�

E‖ψ‖2
σ�

[π]� =
∑

�

E‖ψ‖2
F �σ�

[π]� +
∑

�

g�σ�[π]� (20)

Using properties of weighted norms and diagonal notation [1, 14],
and with σ� → σ, we arrive at

E‖ψ‖2
(I−∑

� F �[π]�)σ
=

( ∑
�

g�[π]�

)
σ (21)

The MSD in steady-state can be calculated as E‖ψ‖2
q , where now

q = col{1, . . . , 1} is M×1 [1]. Solving for σ in (I−∑
� F �[π]�)σ =

q and plugging the result back in (21), yields the network mean-
square deviation in steady-state

MSD ≈
( ∑

�∈V

g�[π]�

)(
I −

∑
�∈V

F �[π]�

)−1

q (22)

The EMSE and MSE arise from similar procedures. Note that the
resulting mean-square performance is a weighted sum of the data
statistics in terms of the chain stationary distribution. If π is uniform,
then the nodes’ statistics are equally accounted for.

Figures 6 and 7 show the MSD across the nodes for the network
settings of Fig. 4 and different stepsizes. Note that the adopted
assumption is quite reasonable: different nodes achieve quite similar
mean-square (deviation) performance for a range of stepsize values.

6. REMARKS AND FUTURE WORK

In the new distributed adaptive algorithm proposed, learning is gov-
erned by two intertwined stochastic processes: the adaptive algo-
rithms run by observations captured at the node level, and the Markov
process n(i) conducting the cooperation.

Simulations corroborate that, in the mean-square sense, the Hamil-
tonian cycle may be relaxed. The new algorithm can be also viewed
as a Hidden-Markov process, and energy conservation methods [14]
were employed for mean-square deviation analysis. A complete
mean-square performance analysis will be pursued in future work.

Future extensions include randomized incremental RLS, and the
use of multiple tokens [6], where several random incremental pro-
cesses take place concurrently. Moreover, not only nodes can learn,
but also the cooperation process may be entitled with learning capa-
bilities, which may be captured by the transition probabilities kept
at each node. By doing so, some nodes may be probabilistically
preferred due to their performance, which may improve the overall
network performance (see (22)).
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