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ABSTRACT

We study the problem of distributed state-space estimation, where a
set of nodes are required to estimate the state of a nonlinear state-
space system based on their observations. We extend our previous
work on distributed Kalman filtering to the nonlinear case, and pro-
pose algorithms for Extended and Unscented Kalman filtering. The
resulting algorithms are robust to node and link failure, scalable, and
fully distributed, in the sense that no fusion center is required, and
nodes communicate with their neighbors only. We apply the algo-
rithms to the problem of estimating the position of every node in
an ad-hoc network, also known as wireless localization. Simulation
results illustrate the performance of the proposed algorithms.

Index Terms— Distributed estimation, distributed Kalman fil-
tering, diffusion, adaptive networks, wireless localization.

1. INTRODUCTION

We study the problem of distributed estimation, where a set of nodes
are required to collectively estimate the state of a nonlinear dynam-
ical system based on their measurements. In a centralized solution
to the problem, all nodes send their measurements to a fusion center,
which uses a conventional filtering technique such as an Extended
Kalman Filter (EKF) or an Unscented Kalman Filter (UKF) to ob-
tain the global state estimate, and then sends the result to every node.
This strategy may require large amounts of energy for communica-
tions and has a potential critical failure point at the fusion center.

Distributed implementations, on the other hand, avoid the use
of a fusion center and distribute the processing and communication
across the network. Among distributed processing algorithms, diffu-
sion algorithms are amenable for real-time implementations, robust
to node and link failure, scale with the size of the network, and ob-
tain good performance in terms of estimation accuracy. Algorithms
for diffusion LMS [1, 2], diffusion RLS [3] and diffusion Kalman
filtering [4, 5, 6] have been proposed. Estimation algorithms based
on average consensus have been proposed in [7, 8, 9, 10].

In this work we extend our previous work on linear distributed
Kalman filtering [4, 6] to the nonlinear case. We propose two al-
gorithms for nonlinear Kalman filtering, denoted diffusion EKF and
diffusion UKF. These algorithms are diffusion-based, and therefore
fully distributed, in the sense that no fusion center is required and
estimates are obtained through local exchanges with neighbors only.

2. PROBLEM FORMULATION AND BACKGROUND

Consider a set of N nodes distributed geographically over some re-
gion. We say that two nodes are connected if they can communicate
directly with each other. The number of nodes connected to a certain

This work was supported in part by NSF grants ECS-0601266, ECS-
0725441 and CCF-094936. Author’s emails: {fcattiv, sayed}@ee.ucla.edu.

node k (including itself) is called the neighborhood of node k, and
is denoted by Nk. It is assumed that at every time instant i, every
node k in the network measures a vector yk,i which is related to an
unknown state vector xi through the following state-space model:{

xi+1 = fi(xi) +Gini

yk,i = hk,i(xi) + vk,i
(1)

where xi ∈ C
M , yk,i ∈ C

Lk and M and Lk are positive integers for
all k. The functions fi(·) and hk,i(·) are possibly nonlinear, and Gi

is a matrix. The signals ni and vk,i denote state and measurement
noises, respectively, and are assumed to be zero-mean, and indepen-
dent in time and space, with covariance matrices given by:

Enin
∗
j = Qiδij E vk,iv

∗
l,j = Rk,iδklδij . (2)

The operator ∗ denotes complex conjugate transposition and δkl is
the Kronecker delta. The initial state x0 is assumed to have mean
Ex0, with covariance matrix Π0 > 0, and is uncorrelated with ni

and vk,i, for all i and k. We further assume that Rk,i > 0.
The objective is for every node in the network to obtain an es-

timate of the current state xi, given its observations and by collab-
orating with other nodes. We will denote by x̂k,i|j the estimate of
xi obtained by node k given observations up to time j. Every node
seeks to minimize the mean-square error (MSE) E ‖xi − x̂k,i|i‖2.

When model (1) is linear (i.e., fi(x) = Fix and hk,i(x) =
Hk,ix), and the measurement noise, state noise, and initial state are
jointly Gaussian, the optimal MSE estimate can be obtained by using
a conventional Kalman filter. When model (1) is nonlinear, several
approaches exist to deal with the problem of sequential state-space
estimation. Two popular algorithms are the EKF and UKF [11, 12].
The EKF linearizes (1), and then applies a conventional Kalman fil-
ter to the resulting model. One difficulty with this algorithm is that
it requires computing the derivatives of the state and measurement
functions. On the other hand, the UKF does not have this require-
ment, and has been shown in some cases to outperform the EKF [12].
Distributed implementations of these two approaches, based on the
diffusion strategy of [6], are presented in Section 3.

2.1. Diffusion Kalman filtering

The diffusion Kalman filter [4] is a fully distributed algorithm for
state-space estimation in linear models. The diffusion KF algorithm
and its variants require the introduction of a diffusion matrix C ∈
R

N×N with the following properties:

1
T
C = 1

T
cl,k = 0 if l �∈ Nk cl,k ≥ 0 (3)

where 1 is an N × 1 column vector with unit entries, and cl,k is the
(l, k) element of matrix C. The entries in C represent the weights
that are used by the diffusion algorithm to combine neighborhood
estimates as follows:

x̂k,i|i =
∑
l∈Nk

cl,kψl,i (4)
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where ψl,i is obtained by applying conventional Kalman filtering re-
cursions on the data from the neighborhood of node l (see [6] for
details). The diffusion step is an attempt to approximate the global
KF performance via local node interactions. The algorithm (in in-
formation form) is summarized below for convenience.

Algorithm 1: Diffusion Kalman filter [6]
Consider a linear state-space model and a diffusion matrix as in
(3). Start with x̂k,0|−1 = Ex0 and Pk,0|−1 = Π0 for all k, and
at every time instant i, compute at every node k:

Step 1: Measurement (incremental) update:

P−1
k,i|i = P−1

k,i|i−1 +
∑
l∈Nk

H
∗
l,iR

−1
l,i Hl,i

ψk,i = x̂k,i|i−1 + Pk,i|i

∑
l∈Nk

H
∗
l,iR

−1
l,i [yl,i −Hl,ix̂k,i|i−1]

Step 2: Diffusion update:
x̂k,i|i =

∑
l∈Nk

cl,kψl,i

Step 3: Time update:
x̂k,i+1|i = Fix̂k,i|i

Pk,i+1|i = FiPk,i|iF
∗
i +GiQiG

∗
i

Algorithm 1 requires that at every instant i, nodes communicate
with their neighbors their measurement matrices Hk,i, the covari-
ance matrices Rk,i, and the measurements yk,i. Subsequently, every
node k performs a measurement update to obtain ψk,i, and then com-
municates this intermediate estimate to its neighbors. Finally, every
node k combines the intermediate estimates ψl,i from its neighbors
in a convex manner, and performs a time-update. It is important to
note that even though the notation Pk,i|i and Pk,i|i−1 has been re-
tained for simplicity in Alg. 1, these matrices do not represent the
true covariances of the state estimates x̂k,i|i and x̂k,i|i−1. Exact ex-
pressions for these covariances are presented in [4, 6].

3. DISTRIBUTED NONLINEAR KALMAN FILTERING

3.1. Selective Diffusion

Before proceeding with the presentation of the distributed nonlin-
ear Kalman filtering algorithms, we introduce a technique denoted
selective diffusion, which will be important in the wireless localiza-
tion application presented in Section 4. Thus, instead of a diffusion
update of the form (4), we will use the more general version:

[x̂k,i|i]m =
∑
l∈Nk

cl,k,m[ψl,i]m (5)

where
∑
l∈Nk

cl,k,m = 1 for all m = 1, . . . ,M , and cl,k,m = 0 if l �∈ Nk

(6)
Hence, the mth entry of x̂k,i|i is calculated through a convex combi-
nation of the mth entries of {ψl,i}, but the set of weights used for the
combination depends on the entry m. This approach can be general-
ized to the case where cl,k are matrices instead of scalars.

3.2. Diffusion Extended Kalman Filtering

We now proceed to derive a diffusion-based EKF. The algorithm is
obtained by linearizing model (1) around certain desirable points,
and applying the diffusion Kalman filtering algorithm (Alg. 1).

Thus, consider again model (1). Linearizing these equations around
some point ψ, we have the first order approximations:

{
xi+1 ≈ fi(ψ) + F̄i(ψ) · (xi − ψ) +Gini

yk,i ≈ hk,i(ψ) + H̄k,i(ψ) · (xi − ψ) + vk,i
(7)

where we defined the matrices

F̄i(ψ) =
∂fi(x)

∂x

∣∣∣∣
x=ψ

H̄k,i(ψ) =
∂hk,i(x)

∂x

∣∣∣∣
x=ψ

Introducing

ȳk,i(ψ) = yk,i − hk,i(ψ) + H̄k,i(ψ) · ψ
ūk,i(ψ) = fi(ψ)− F̄i(ψ) · ψ

we obtain a linear model of the form:
{

xi+1 ≈ F̄i(ψ) · xi +Gini + ūk,i(ψ)
ȳk,i(ψ) ≈ H̄k,i(ψ)xi + vk,i

(8)

where ūk,i(ψ) is a deterministic input to the model. The above
model clearly depends on the point ψ used to evaluate the state and
measurement equations, and this point should be as close as possible
to the true state xi in order to have a good approximation. Notice
from Alg. 1, that in order to compute the measurement update, we
need to know Hk,i. The best estimate of xi known at this point is
x̂k,i|i−1. Thus, we replace ψ in the measurement equation of (8)
with x̂k,i|i−1. During the diffusion update, we already have access
to x̂k,i|i, and therefore this is the best estimate of xi. Thus, we may
replace ψ in the state equation of (8) with x̂k,i|i. The complete pro-
posed algorithm is shown below.

Algorithm 2: Diffusion Extended Kalman filter
Consider a state-space model as in (1) and a diffusion matrix as
in (6). Start with x̂k,0|−1 = Ex0 and Pk,0|−1 = Π0 for all k,
and at every time instant i ≥ 0, compute at every node k:

Step 1: Measurement (incremental) update:
Ĥk,l,i = H̄l,i(x̂k,i|i−1)

P−1
k,i|i = P−1

k,i|i−1 +
∑
l∈Nk

Ĥ
∗
k,l,iR

−1
l,i Ĥk,l,i

ψk,i = x̂k,i|i−1 + Pk,i|i

∑
l∈Nk

Ĥ
∗
k,l,iR

−1
l,i [yl,i − hl,i(x̂k,i|i−1)]

Step 2: Diffusion update:
[x̂k,i|i]m ←

∑
l∈Nk

cl,k,m[ψl,i]m (selective diffusion)
Step 3: Time update:
x̂k,i+1|i = F̄i(x̂k,i|i) · x̂k,i|i + ūk,i(x̂k,i|i)
Pk,i+1|i = F̄i(x̂k,i|i)Pk,i|iF̄i(x̂k,i|i)

∗ +GiQiG
∗
i

Notice that in addition to the measurements yl,i and covariances
Rl,i, node k also needs to have access to the measurement functions
of its neighbors and their derivatives, namely hl,i(·) and H̄l,i(·).

3.3. Diffusion Unscented Kalman Filter

We now derive an Unscented Kalman filtering (UKF) version of Al-
gorithm 1. We proceed in a similar fashion as we did with the diffu-
sion EKF (Alg. 2). Let nk denote the number of neighbors of node
k (including itself), and k1, k2 . . . , knk

denote the indexes of these
neighbors (i.e., Nk = {k1, k2, . . . , knk

}). Since every node k has
access to the measurements of its neighbors, we can consider the
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following augmented observation for node k, and its corresponding
measurement noise covariance matrix

y̆k,i = col{yk1
, yk2

, . . . , ynk
} = h̆k,i(xi)

R̆k,i = diag{Rk1,i, Rk2,i, . . . , Rnk,i}

where the operators col{·} and diag{·} work by stacking their argu-
ments column- and diagonal-wise, respectively.

Assume a model as in (1), and let x̂k,i|i−1 and ŷk,i|i−1 denote
the linear minimum MSE estimators of xi and y̆k,i, respectively,
given observations {y̆k,j} up to time i − 1, and let Pk,i|i−1 denote
the covariance matrix of x̂k,i|i−1. A well known result in linear
estimation theory [13] states that given a new observation y̆k,i at
time i, we can update the optimal linear estimator as follows:

x̂k,i|i = x̂k,i|i−1 +Kk,i(yk,i − ŷk,i|i−1)
Pk,i|i = Pk,i|i−1 −Kk,iRe,k,iK

∗
k,i

Kk,i = Rxe,k,iR
−1
e,k,i

(9)

where Rxe,k,i = E(xie
∗
k,i), Re,k,i = E ek,ie

∗
k,i and ek,i = y̆k,i −

ŷk,i|i−1. We also have

ŷk,i|i−1 = E[h(xi)|{y̆k,j}j=0,...,i−1]
x̂k,i+1|i = E[f(xi)|{y̆k,j}j=0,...,i]

The UKF [11, 12] computes the above expectations by propa-
gating sigma-points. Assume node k has an estimate of xi, x̂k,i|i−1,
and an estimate of its covariance matrix, Pk,i|i−1. The first step is
for node k to draw a set of 2M + 1 sigma points as follows:

X−
k,i = x̂k,i|i−11

T + [0 γP
1/2

k,i|i−1 − γP
1/2

k,i|i−1] (10)

where P
1/2

k,i|i−1 is a lower triangular Cholesky factor of Pk,i|i−1 and
1 is a vector of dimension 2M + 1 with unit entries. Next, the
sigma-points are propagated through the measurement equation:

Yk,i =
[
h̆k,i(X−

k,ie1) h̆k,i(X−
k,ie2) . . . h̆k,i(X−

k,ie2M+1)
]
(11)

where eL is a vector with a unit entry at position L and zeros else-
where. We now obtain approximations for ŷi|i−1, its covariance, and
the cross-covariance with xi, namely,

ŷk,i|i−1 = Yk,iw
(m)

Re,k,i = (Yk,i − ŷk,i|i−11
T )W (c)(Yk,i − ŷk,i|i−11

T )∗ + R̆k,i

Rxe,k,i = (X−
k,i − x̂k,i|i−11

T )W (c)(Yk,i − ŷk,i|i−11
T )∗

(12)
where w(m) and W (c) are weighting parameters. The measurement
update is now:

ψk,i = x̂k,i|i−1 +Kk,i(y̆k,i − ŷk,i|i−1)
Pk,i|i = Pk,i|i−1 −Kk,iRe,k,iK

∗
k,i

Kk,i = Rxe,k,iR
−1
e,k,i

(13)

Compared to (9), notice that we are now using the intermediate vari-
able ψk,i. As was the case for the EKF, the diffusion update is:

[x̂k,i|i]m ←
∑
l∈Nk

cl,k,m[ψl,i]m (selective diffusion) (14)

In order to perform a time-update, we again draw 2M + 1 sigma-
points around the latest estimate, propagate them through the state

equation, and compute the new mean and covariance as follows:

Xk,i = x̂k,i|i1
T + [0 γP

1/2

k,i|i − γP
1/2

k,i|i]

X †
k,i+1 = [fi(Xk,ie1) fi(Xk,ie2) . . . fi(Xk,ie2M+1)]

x̂k,i+1|i = X †
k,i+1w

(m)

Pk,i+1|i = (X †
k,i+1 − x̂k,i+1|i1

T )W (c)(X−
k,i+1 − x̂k,i+1|i1

T )∗

(15)
The algorithm parameters [12] are given by:

λ = α2(M + κ)−M

γ =
√
M + λ

w(m) =
[

λ
M+λ

2
M+λ

2
M+λ

. . . 2
M+λ

]T
W (c) = diag

{
λ

M+λ
+ δ, 2

M+λ
, 2
M+λ

, . . . , 2
M+λ

} (16)

Typical values of the parameters are α = 10−4, κ = 3−M , β = 2
and δ = 1− α2 + β. The complete algorithm is shown below.

Algorithm 3: Diffusion Unscented Kalman filter
Consider a state-space model as in (1) and a diffusion matrix as
in (6). Start with x̂k,0|−1 = Ex0 and Pk,0|−1 = Π0 for all k,
and at every time instant i ≥ 0, repeat at every node k:

• Calculate 2M + 1 sigma-points using (10) and propagate
through the measurement equation using (11).
• Perform a measurement-update using (12) and (13).
• Perform a diffusion update using (14).
• Calculate 2M + 1 new sigma-points, propagate through the
state equation and perform time-update using (15).

4. APPLICATION: WIRELESS LOCALIZATION

We now apply the proposed nonlinear estimation algorithms (Alg.
2 and 3) to the problem of wireless localization. Every node is re-
quired to obtain an estimate of its own position (assumed to be 2-
dimensional) based on their measurements. It is also assumed that
there is a set of anchor nodes that know their positions exactly. The
initial network topology is shown in Fig. 1, with the anchors denoted
as red squares. All nodes are placed in the [0, 1]× [0, 1] square. Let
{k1, k2, . . . , knk−1} denote the set of neighbors of node k, exclud-
ing itself. It is assumed that if nodes k and kl �= k are neighbors,
and are located at time i at positions (xk,i, yk,i), and (xkl,i, ykl,i),
respectively, then node k obtains a measurement of the form:

dk,l,i = η log

(
ε+

√
(xk,i − xkl,i)

2 + (yk,i − ykl,i)
2

)

At time i, the measurement vector obtained by node k and the state
vector of the network are given, respectively, by:

yk,i = [dk,1,i . . . dk,nk−1,i]
T + vk,i

xi = [x1,i y1,i x2,i y2,i . . . yN,1 yN,2]
T

In our simulations we use a linear state equation, with fi(xi) = xi.
We also use Π0 = 10−4IM , G = I , Q = 2 × 10−5I , Rk,i =

5
√
k × 10−4Ink−1, η = −1 and ε = 0.1. The initial states are

x̂k,0|−1 = 0.51 for all k.
Notice that in our observation model, node k only observes the

state of its neighbors. Thus, any estimate of the position of any other
node may be unreliable. For this reason, in the diffusion update of
Algorithms 2 and 3, a node will combine in a convex manner the
estimates of its neighbors, only for those entries that are reliable.
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Fig. 1. Network topology, where red boxes are anchor nodes.

Thus, for the diffusion coefficients we use the following rule:

cl,k,m =

{
αk,mnl if l ∈ Nk and node l observes state m
0 otherwise

(17)
where αk,m is a normalizing constant such that (6) is satisfied. Every
node is weighted proportionally to its degree. If neighbor l of node
k does not observe state m, node k uses a weight zero for this entry
in the diffusion update.

Figure 2 shows the transient performance of the proposed algo-
rithms, compared to other cooperation schemes. The performance
is measured in terms of the estimation error obtained by each node
when estimating its own position only (the estimates of the posi-
tions of other nodes are not included), averaged over all nodes and
over 50 independent experiments. The global solution could be com-
puted, for example, by a fusion center in a centralized strategy. The
“no cooperation” algorithm corresponds to the case where nodes do
not exchange measurements with their neighbors, and run a con-
ventional EKF or UKF on their own data. The “local” algorithm
corresponds to the case where nodes exchange their measurements
with their neighbors, and run a conventional EKF or UKF on this
data, which includes their own measurements and the measurements
of the neighbors. Note that in this case no diffusion is present and
intermediate estimates are not exchanged. The plots show that both
the diffusion EKF and UKF algorithms have a performance which
is close to the global solutions. In comparing the EKF and UKF so-
lutions, we did not find a significant difference in our simulations.
Fig. 3 shows the estimated node positions for one experiment, using
the diffusion UKF algorithm (Alg. 3). Notice that the positions are
correctly estimated after a few iterations.

5. CONCLUSIONS

We proposed diffusion EKF and UKF algorithms for distributed es-
timation in non-linear dynamic systems. Our simulations indicate
that the algorithms can achieve a performance close to the global
solution for the problem of distributed wireless localization.
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