
OPTIMAL LINEAR FUSION FOR DISTRIBUTED SPECTRUM SENSING VIA
SEMIDEFINITE PROGRAMMING

Zhi Quan†, Wing-Kin Ma‡, Shuguang Cui§, and Ali H. Sayed†

†Department of Electrical Engineering, University of California, Los Angeles, CA 90095, USA
‡Department of Electronic Engineering, Chinese University of Hong Kong, Shatin, N.T., Hong Kong

§Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA

ABSTRACT

As an enabling functionality of overlay cognitive radio
networks, spectrum sensing needs to reliably detect licensed
signal in the band of interest. To achieve reliable sensing, we
propose a linear fusion scheme for distributed spectrum sens-
ing to combine the sensing results from multiple spatially dis-
tributed cognitive radios. The optimal linear fusion design is
formulated into a nonconvex optimization problem. We show
that the optimal solution of such a nonconvex problem can be
solved via semi-definite programming reformulation.

Index Terms— Spectrum sensing, distributed detection,
cognitive radio, nonconvex optimization, and semi-definite
programming.

1. INTRODUCTION

To improve the radio resource utilization, the Federal Com-
munications Commission (FCC) is developing rules for unli-
censed devices to dynamically access empty television bands
or spectral holes. Cognitive radio (CR), as a promising tech-
nology to improve the spectral utilization, is defined as a radio
system that continuously senses its spectral environment, dy-
namically identifies empty channels, and then operates in the
empty channels.

Due to the channel impairments, i.e., shadowing and mul-
tipath fading, a single CR may not be able to reliably detect
the licensed signal. To improve sensing reliability, it is of use
to fuse the sensing results from multiple spatially distributed
CRs to make a joint decision. A CR network equipped with
such a data fusion capability has a better chance to detect
the primary radios, hence mitigating the interference to the
licensed transmissions.

In general, the data fusion methods fall into two cate-
gories, i.e., hard and soft decision combining. The optimal
hard decision fusion scheme needs to determine the optimal
thresholds at both the individual nodes and the fusion center.
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Since finding these optimal thresholds for correlated observa-
tions is an NP hard problem [1], one has to turn to suboptimal
solutions. On the other hand, the system can make only one
decision at the fusion center based on the soft decisions col-
lected from individual nodes. It is well known that the optimal
fusion scheme for soft decision combining is the likelihood
ratio test (LRT). However, the LRT based detector is mathe-
matically intractable due to its quadratic structure. In [2], it
has been shown that a linear fusion scheme is comparable to
the LRT approach with much better design flexibility. Alter-
natively, the linear structure allows quick adaptation to envi-
ronmental changes [3]. The optimization of the linear fusion
scheme can be formulated into a nonconvex problem, which
can be solved using an iterative algorithm developed in [2].

In this paper, we present a faster algorithm to optimize
the linear fusion scheme with applications in distributed spec-
trum sensing. We show that the formulated nonconvex opti-
mization problem can be relaxed into a semi-definite program
(SDP). SDP relaxation has recently become a popular con-
vex approximation technique for various applications [4] [5].
However, we show that SDP relaxation can exactly solve our
nonconvex optimization problem formulated for distributed
spectrum sensing design.

2. SYSTEM MODEL

Consider a network of N spatially distributed CRs in the same
area, each of which is sensing a channel of interest under the
two hypotheses H0 and H1. Specifically, H0 denotes the hy-
pothesis that the primary signal is absent or far away, and
H1 denotes the hypothesis that the primary signal is present
in the vicinity. Each CR sends its real-valued observation
ui to the fusion center. Based on the received information
u = [u1, u2, . . . , uN ], the fusion center makes a global deci-
sion D(u1, u2, . . . , uN ) on either H0 or H1.

Suppose that the received vector u at the fusion center fol-
lows an N -dimensional normal (Gaussian) distribution under
each hypothesis, i.e.,

u ∼
{ N (μ0,Σ0) , H0

N (μ1,Σ1) , H1
(1)
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where μ0(μ1) and Σ0(Σ1) are the mean vector and covari-
ance matrix of u under H0(H1). Refer to [2] for how such
a model can be motivated in a practical distributed spectrum
sensing system. Note that Σ0 � 0 and Σ1 � 0.

At the fusion center, we propose a linear fusion rule as

T (u) =
N∑

i=1

wiui = wT u
H1

�
H0

γ (2)

where w = [w1, w2, . . . , wN ]T are the weight coefficients.
Since the linear combination of multiple Gaussian random
variables is still Gaussian, it can be verified that

T (u) ∼
{ N (

wT μ0,w
T Σ0w

)
, H0

N (
wT μ1,w

T Σ1w
)
, H1

. (3)

The detection performance can be evaluated in terms of the
probability of false alarm,

Pf = P (T (u) ≥ γ|H0) = Q

(
γ − wT μ0√

wT Σ0w

)
(4)

and the probability of detection

Pd = P (T (u) ≥ γ|H1) = Q

(
γ − wT μ1√

wT Σ1w

)
(5)

where Q(·) denotes the complementary cumulative distribu-
tion function, i.e., Q(x) = 1√

2π

∫ +∞
x

e−τ2/2dτ .
In CR networks, the probabilities of false alarm and de-

tection have unique implications for the system performance.
With the assumption that CRs always transmit in the chan-
nels in which they do not detect primary signals, 1−Pd mea-
sures the probability that CRs cause interference to the pri-
mary transmissions (i.e., the probability of missed detection),
and 1 − Pf measures opportunistic spectral utilization, i.e.,
the probability that the empty channel is available for CRs.

3. PROBLEM FORMULATION

Our objective is to find the optimal w that minimizes the in-
terference to the primary transmission while meeting some
requirement on the opportunistic spectral utilization. Hence,
the problem is formulated as one of maximizing Pd subject to
some constraint on Pf , i.e.,

max
w

Pd

s.t. Pf ≤ ε.
(6)

From (4), we can express the threshold γ as a function of
w and the required Pf (by setting Pf = ε):

γ = wT μ0 + Q−1 (ε)
√

wT Σ0w. (7)

Plugging (7) into (5) gives us an unconstrained optimization
problem as

max
w

Q

(
Q−1(ε)

√
wT Σ0w − wT (μ1 − μ0)√

wT Σ1w

)
. (8)

Since Q(·) is a monotonically non-increasing function, (8) is
equivalent to

min
w

f(w) =
Q−1(ε)

√
wT Σ0w − (μ1 − μ0)

T w√
wT Σ1w

. (9)

Directly solving (9) is difficult since it is a nonconvex
problem. To find the global optimal solution, we employ a
divide-and-conquer strategy. By observing the problem struc-
ture in (9), we find that it can be reformulated into the follow-
ing two subproblems. If f(w) ≥ 0, i.e., Pd ≤ 1/2, (9) is
equivalent to

min
z

Q−1(ε)
√

zT Σ0z − (μ1 − μ0)
T z

s.t. zT Σ1z ≥ 1
(10)

where z = w/
√

wT Σ1w. Otherwise, (9) is equivalent to

max
z

−Q−1(ε)
√

zT Σ0z + (μ1 − μ0)
T z

s.t. zT Σ1z ≤ 1.
(11)

Since the sign of Q−1(ε) is undetermined, the problems
(10) and (11) are still nonconvex in general. In the next sec-
tion, we show how to solve (10) via SDP relaxation. Once
(10) is solved, (11) can be solved using a similar approach.

4. SDP RELAXATION

The proposed SDP relaxation approach is based on a judi-
cious reformulation of the original problem in (11). To see
this, we introduce a new variable

α = Q−1(ε)
√

zT Σ0z − (μ1 − μ0)
T z. (12)

Thus, (10) can be transformed into

min
z

α2 (13)

s.t. α = Q−1(ε)
√

zT Σ0z − (μ1 − μ0)
T z

zT Σ1z ≥ 1
α ≥ 0

where we utilize the fact that minimizing α2 is equivalent to
minimizing α since α is nonnegative. Furthermore, it can be
shown that (13) is equivalent to

min
z

α2 (14)

s.t.
[
α + (μ1 − μ0)

T z
]2

= Q−2(ε)zT Σ0z

zT Σ1z ≥ 1
α ≥ 0
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which is a nonconvex quadratic program with two quadratic

constraints. By introducing a new variable x =
[
zT α

]T
, we

can write problem (14) as

min
x

xT Fx

s.t. xT G1x = 0

xT Hx ≥ 1

(15)

where

F =
[

0N×N 0N×1

01×N 1

]
, (16)

G1 =

[
(μ1 − μ0) (μ1 − μ0)

T − Q−2(ε)Σ0 μ1 − μ0

(μ1 − μ0)
T 1

]
,

(17)
and

H =
[

Σ1 0N×1

01×N 0

]
, (18)

with F, G1, and1 H ∈ SN+1.
Since2 F � 0 and H � 0, an optimal solution of (15)

must satisfy
xT Hx = 1. (19)

Thus, (15) is equivalent to

min
x

xT Fx

s.t. xT G1x = 0, xT Hx = 1.
(20)

Applying SDP relaxation [6] and eliminating the hidden con-
straint X = xxT ∈ SN+1, we can obtain a standard SDP
problem as follows:

min
X∈SN+1

tr (FX)

s.t. tr (G1X) = 0, tr (HX) = 1
X � 0

(21)

which has linear equality constraints and a matrix nonneg-
ativity constraint on the unknown variable X. Recall that
tr (FX) =

∑N+1
i=1

∑N+1
j=1 FijXji is in the form of a general

real-valued linear function on SN+1, which shows that SDP
is a generalized framework of linear programming over ma-
trices. As a result, (21) is a relaxation of (15) since we have
removed the rank-one constraint.

5. RANK-ONE SOLUTION

In this section, we will show that there exists at least one rank-
one solution for (21) such that its optimal objective value is
the same as that of (15), and thus this rank-one solution is
the optimal solution of (15). The development of the rank-
one solution for our particular problem in (21) needs a special
rank-one decomposition technique proposed in [7]:

1Sn denotes the set of n × n symmetric matrices.
2� denotes the matrix inequality, i.e., A � B means that A − B is

positive semi-definite.

Lemma 1 Let X ∈ Sn,X � 0 be a matrix with rank r.
Given G ∈ Sn, X can be decomposed into

X =
r∑

i=1

xixT
i (22)

where the decomposed vectors x1,x2, . . . ,xr satisfy

xT
i Gxi =

tr(GX)
r

, i = 1, 2, . . . , r. (23)

�

This decomposition can be proven by construction, and its
pseudo code is given as follows:

Rank-One Decomposition Procedure

Input: X � 0, and G ∈ Sn.

Step 1: Apply any decomposition that yields X =
∑r

i=1 xix
T
i ;

e.g., eigendecomposition.

Step 2: If xT
i Gxi = tr(GX)/r for all i then output x1, . . . ,xr

and return; otherwise find i, j such that xT
i Gxi > tr(GX)/r and

xT
j Gxj < tr(GX)/r.

Step 3: Determine β such that (xi + βxj)
T G(xi + βxj) =

(1 + β2)tr(GX)/r.

Step 4: xi := (xi + βxj)/
√

1 + β2, xj := (−βxi +

xj)/
√

1 + β2.

Step 5: Repeat Step 2.

The above decomposition technique has been used in [7]
to solve nonconvex quadratic programs with two quadratic
constraints. However, the method in [7] is not directly appli-
cable to solving the problem (21). Thus, we give the follow-
ing theorem to find a rank-one solution for (21).

Theorem 1 Let X̄ be a solution to the SDP relaxation prob-
lem (21) and suppose r = rank(X̄). A rank-one solution
to (21) can be obtained from X̄ by performing the following
steps:

i) Apply the decomposition according to Lemma 1 on X̄
with respect to G1 to obtain vectors x1,x2, . . . ,xr.

ii) For any l satisfying xT
l Hxl > 0, 1 ≤ l ≤ r, let

x̄l =
xl√

xT
l Hxl

.

We have x̄lx̄T
l as the optimal rank-one solution for (21). �

The above result can be proven by showing that the rank-
one matrix x̄lx̄T

l essentially satisfies the Karush-Kuhn-Tucker
(KKT) [6] optimality conditions of (21). The proof is omit-
ted due to the space limit, but will be provided in the future
publication [8].
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Fig. 1. (1 − Pd) versus (1 − Pf ), with N = 2 and γ = 2 at

various SNR levels. The SNR levels of the two CRs are given in the

parentheses.

6. NUMERICAL EXAMPLES

In this section, we evaluate the detection performance of the
optimal linear fusion scheme. By assuming that H0 and H1

are equally probable, we can define the signal-to-noise ratio
(SNR) of each CR as

SNRi =
2 (μ1,i − μ0,i)

2

σ1,ii + σ0,ii
(24)

where σj,ii is the (i, i)th entry of Σj (j = 0, 1). Let 1 denote
an all-one vector. We choose Σ0 = diag(1) and Σ1 = κΣ0,
where κ implies the difference between Σ0 and Σ1.

In Figure 1, we illustrate the probability of missed detec-
tion (i.e., 1−Pd) versus the probability of detecting the spec-
tral hole (i.e., 1 − Pf ) over various SNR levels. The curve
of the optimal linear detector is denoted by LIN and the LRT
detector serves as a performance benchmark. It can be ob-
served that the optimal linear detector approaches the LRT
performance limit.

In Figure 2, we show how the difference between Σ0 and
Σ1 affects the detection performance. It can be observed
that the optimal linear detector approximates the LRT detec-
tor well if the difference between Σ0 and Σ1 is small (e.g.,
κ ≈ 1). In the special case where κ = 1, the LRT detec-
tor degenerates into a linear detector. On the other hand, the
linear detector might be far away from the optimum if the dif-
ference between the two covariance matrices is large.

7. CONCLUSION

In this paper, we have proposed a linear fusion strategy for
distributed spectrum sensing in CR networks via SDP by build-
ing on the results of [2]. We have shown that the optimization
of such a linear fusion scheme can be efficiently and exactly

0 0.2 0.4 0.6 0.8 1
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Prob. Detecting the Spectral Hole

P
ro

b.
 M

is
se

d 
D

et
ec

tio
n

LIN (γ=0.5)
LRT (γ=0.5)
LIN (γ=1)
LRT (γ=1)
LIN (γ=2)
LRT (γ=2)

Fig. 2. (1−Pd) versus (1−Pf ), with N = 2 and various γ values.

solved via careful SDP reformulation. The resultant linear
detector can achieve performance comparable to that of the
optimal LRT approach. The results provide a simple and ef-
fective design approach for distributed spectrum sensing in
CR networks to achieve improved sensing reliability.
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