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ABSTRACT

This paper presents an efficient adaptive combination strategy for
diffusion algorithms over adaptive networks in order to improve the
robustness against the spatial variation of SNR over the network.
The diffusion least-mean square (LMS) algorithm with the proposed
combination rule and its mean transient analysis are included. Sim-
ulation results show that the diffusion LMS algorithm with our com-
biners outperforms those with existing static combiners and the in-
cremental LMS algorithm.

Index Terms— Adaptive filters, distributed estimation, adaptive
networks, diffusion, cooperative systems, adaptive combiners

1. INTRODUCTION

We consider the problem of distributed estimation over adaptive net-
works [1–4] where, unlike ordinary adaptive filtering, each node of
the network is allowed to cooperate with its neighbors in order to
estimate some parameter of interest. Such cooperation enables us
to leverage the spatial diversity obtained from the distribution of the
nodes as well as the temporal diversity, and the performance of sys-
tem can be improved significantly.

The performance of adaptive networks depends strongly on the
mode of cooperation, e.g., incremental [1], diffusion [2], or proba-
bilistic diffusion [3]. In this paper, we focus on the diffusion mode
of cooperation because this mode is more robust to node and link
failure [3]. In the diffusion mode, the nodes exchange their esti-
mates with neighbors and then try to exploit the collected estimates
via convex combination [2]. So far, several combination rules, such
as the Metropolis [5] and relative-degree [4] rules, have been pro-
posed that are based solely on the network topology, i.e., combina-
tion weights are calculated from the degree of each node and hence
do not reflect node profile. Therefore, the performance of such rules
deteriorates if the signal-to-noise ratio (SNR) at some nodes is lower
than others; because the noisy estimate of such a node diffuses into
the entire network by cooperation among the nodes.

Initial investigations on adapting the combination weights were
done in [2, 6]. In this paper, we take a more systematic approach
and formulate a well defined minimum variance unbiased estimation
problem. We then use the problem to propose an adaptive combi-
nation rule that learns its combination weights so that the effect of
noisy estimates is suppressed. In addition, simulation results show
that the diffusion LMS algorithm with our adaptive combination rule
outperforms existing static combination rules.
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2. DIFFUSION LMS ALGORITHMS

To begin with, let us introduce our notation. We use boldface letters
for random variables and normal fonts for deterministic quantities.
Capital letters are used for matrices and small letters for vectors. The
notation ���� and ���� stand for transposition and conjugate transpo-
sition for vectors and matrices, respectively, and ���� is also used to
denote complex conjugation for scalars. Expectation is denoted by
�� � �.
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Fig. 1: Adaptive network with � nodes.
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Fig. 2: Combine-then-Adapt (CTA) diffusion strategy [2, 7].

Now, consider� nodes in a predefined network topology and let
�� denote the neighborhood of node � including � itself; see Fig. 1.
At each time �, each node � has access to a scalar measurement �����
and a regression row vector ���� of length� that are related via

����� � �����
� � 	����, (1)

where �� is an unknown column vector of length � and 	���� is
noise. The objective is to generate an estimate 
��� of �� at each
node � and time �.

The diffusion strategy we consider is performed in two stages
[2]: combination and adaptation (see Fig. 2). In this strategy,
each node � first computes a linear combination of local estimates
�
����������

collected from its neighbors, i.e.,

������

�
�
�

����

������
�����, (2)

2845978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009



where ������������ is a possibly time-varying combination weight
calculated from information available at node �. Then, ������ is
used by an adaptive filter to adapt local data ������� �����. We refer
to this strategy as Combine-then-Adapt (CTA) diffusion [2]. Also,
it is possible to reverse the order of the two stages, i.e., adaptation
followed by combination. We refer to this version as Adapt-then-
Combine (ATC) diffusion [7]. For example, using the LMS algo-
rithm as the core adaptive filter yields the following CTA and ATC
diffusion algorithms [2]:

CTA diffusion LMS [2]:���
��
������ �

�
����

������������

���� � ������ � 	��
�
���������� �����������

(3)

ATC diffusion LMS [7]:���
��
���� � ������ � 	��

�
���������� �����������

���� �
�
����

���������� (4)

In the CTA and ATC strategies, the combiner weights ��������
play an important role. Suppose, for example, that the estimates
������ collected from some neighbors are less reliable than others
due to low SNR conditions. In such case, we should give less weight
to the noisy estimates. Thus, static combination rules, which keep
������ constant, are likely to result in performance deterioration (see
also Sec. 5). To improve the robustness to such cases, we propose an
adaptive combination strategy.

3. ADAPTIVE COMBINERS

3.1. Problem Formulation

Let us formulate the problem of controlling the combination weights
������. Suppose that for each node �, the local estimates ������ � �
�� �� 
 
 
 � are realizations of some random vector ��. Then, we
would like to find a vector of coefficients �� � ��	����� ���� 
 
 
 � ����
that solves the following problem:


���
�
�
����

�

�����
�
� ����� � 


���

subject to ��� � � for � �� ��,
(5)

where � � ��
�
� 
 
 
 ��� � is an� �� random matrix. Note that

the constraint must be satisfied because node � has no access to real-
izations of ��������� . Unfortunately, problem (5) cannot be solved
directly due to the presence of the unknown quantity 
�. However,
if we assume that every estimate �� is unbiased, i.e., ��� � 
�

for all � � �� 
 
 
 � � and hence �� � 
�
�
� , we have by the

bias-variance decomposition that [8]

����� � �
�
��	��� �� 	
variance

� ����� �� � ��
���� �� 	
bias�

,

where �	 is an � �� matrix defined as

�	
�
� �



��
�
�� ������� ����

�

, (6)

��� 	 � denotes the real part, and �� is the � � � vector whose
components are all unity. Therefore, if we impose ����� � �, the
second term involving the unknown quantity 
� is eliminated and

we arrive at the following minimum variance unbiased estimation
problem:


���
�
�
����

�

�
�
��	��

subject to �
�
��� � � and ��� � � for � �� ��.

(7)

The dimension of problem (7) can be reduced from � unknowns to
the cardinality of ��, say ��, by introducing an auxiliary variable.
Let �� be the � � �� matrix whose columns are given by

�� � � the �-th column of �� ����� .

Then, any vector �� that satisfies ��� � � for � � �� can be repre-
sented as

�� � ���� with some �� � �
� . (8)
Therefore, substituting into (7), we get


���
�
�
����

�
�

������
�
� �

�
��	����

subject to �� � ��
�
� � � � �
� 
 ��
�� � � �,

(9)

where �	�� is the �� � �� matrix defined as

�	��
�
� �

�
� �	�� (10)

and �
�
�
� � �

� �� is the �� � � vector whose components are all
unity. Problem (9) is much simpler than (7) and the solution to (9) is
well-known to be [8]:

�
�
�

�
�

���	���
�

��
�
���	���
�

,

provided that �	�� is positive definite (�	�� is at least nonnegative
definite). Noting that all components of�	�� are quadratic moments
of the random vectors �������� , we can compute �

�
� from local in-

formation available at node �, if we collect a number of realizations
of �������� sufficient to estimate the moment �	��. Then, the so-
lution of (7) can be recovered from ��� as ��� � ���

�
�. However, for

the purpose of an adaptive implementation, we introduce a steepest-
descent solution.

3.2. Steepest-Descent Solution

In order to apply the standard steepest-descent method to (9), we
need to eliminate the linear constraint ��. We apply a similar tech-
nique introduced in [9, Example 5]. Let ��� be the projection from
�

� onto ��, which is given by

��� ��� �

�
�
� �

�
��
�

�

��

�
��

�
�

��
for all � � �
� .

We introduce a second auxiliary variable. Since any �� � �� is a
projection of some point �� � �
� onto ��, we can write

�� � ������� for some �� � �
� . (11)

Therefore, substituting this into (9), we arrive at the following un-
constrained problem:


���
�
�

���

�
�

�������
�
�	�� ��� ����. (12)

Note that this is just a quadratic function because ��� is affine in ��.
Our algorithm is derived by applying the standard steepest-descent
method to (12) and then recovering �� from (8) and (11), i.e.,���
��

���� � ������ � �����

�
�
� �

�
��
�

�

��

�
�	����� ��������,

���� � ���������, ���� � ������,
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where ����� � � is a stepsize. In this iteration, if we choose an
initial point ����� from ��, we can verify that ���� � �� is ensured
for all �, i.e., ��� ������ � ���� for all �. Hence, the iteration can be
simplified to the following:���
��

���� � ������ � �����

�
��� �

����
�
��

��

�
����������,

	��� � 
�����,
(13)

where ����� must be chosen such that ��������� � �.

3.3. Adaptive Solution

We now replace ���� by an instantaneous approximation to derive
an adaptive version for (13). In view of (10) and (6), we use the
following approximation:

���� � ��
�
���������

��������
�
,

where������� is an� � �� matrix defined as

�������
�
� 	
����� � 
�����
���� .

Replacing ���� in (13) by its instantaneous approximation, we ar-
rive at the following adaptive combination algorithm:

Diffusion with Adaptive Combiners (DAC): At each node �, do
the following:

1. Choose ����� � � so that ���� ����� � � and set 
���� �

���� � �, where the inequality is componentwise.

2. At each time �, update ������ and compute 	��� via���
��

���� �

�
����

����
�
��

��

�
��
�
���������

��������
�
������

���� � ������ � ����� ����� 	��� � 
�����. (14)

Then, combine �
���������� with 	��� as in (3) or (4).

Replacing 
��� by ���� yields the combiners for the ATC version.
A possible choice for ����� is the following normalized stepsize:

����� � �
��


�
��������� � � 	 � 	 ��

�

����
� � �

, (15)

where � � ��� �� and � � � are constants, 
 � 
� denotes the max-
imum norm, and ��������� is the �-th component of ������. This
rule keeps ���� � � for all � and the weight vector 	��� � 
����� en-
forces a convex combination. Hence, the Gerschgorin Circle Theo-
rem ensures ���������� 	 �, where ���������� denotes the spectral
radius of �� � 		���� � � � � 		��
. As we will see in the next section,
this is not sufficient but at least a necessary condition for the stability
in the mean sense.

4. MEAN TRANSIENT ANALYSIS

Let us comment briefly on the mean transient analysis of the CTA
diffusion LMS algorithm with (14), by following the arguments of
[3]. Let

��
� �� �	 � �
� ��
�
� ���������� � � � ��	 �����

� �
�
� ���������� � � � ��	���� ��

�
� ���������� � � � ��	 �����

where � denotes the Kronecker product and �����, �����, and
����� are random variables. Then, by the model (1), we have
�� � � ��

�
� � ��. Moreover, let us introduce

��
�
� 	����� � � � � �	��
� �

�
� ��������� � � � � � �	����

��
�
� �

�
� � �� � �

��� �� ����������� � � � ��	������	���� �
� ��
� ������

where realizations of ���� appear in (14). Then, by (3) and the fact
that���

�
� � ��
�, we have

	��
� ��	� ������ ����

	���� ����� ��.

Assuming (i) temporal and spatial independence of the regressors,
(ii) that the noise is zero-mean and independent of the regressors,
and (iii) the independence of�� and 	����

, we get

� 	��
�


�	� ���	���� �


�
�	��
� 	����

Therefore, letting� �
� �	����	���� �
, we find that the stability

in the mean is ensured if the spectral radius of��	��
 is strictly less
than one for all �. Noting that � is Hermitian and�� � ��

� � �� ,
we have ��������	��
�� 	 ��������� � 
���
�, where 
 � 
� is
the matrix 2-norm. Hence, if every realization�� of�� is controlled
so that 
��
� 	 �, our combiner has a stabilizing effect over the
noncooperative case, which corresponds to �� � �	 . Note that
���������� 	 � is a necessary condition for 
��
� 	 �.

5. SIMULATION EXAMPLES

We present simulation examples to illustrate the performance of our
adaptive combiner. We consider two scenarios over the network
topology with � � �� nodes of Fig. 3. The network statistical pro-
file for scenario 1 is also depicted in Fig. 3 and that of scenario 2 is
the same as scenario 1, except for the noise power at node �. In sce-
nario 2, ����� is set to ���� (����� dB in SNR) and hence the weights
for node � are critical for the network performance. Through these
examples, we would like to illustrate the importance of the adaptive
combiners as well as the performance of our algorithm. The un-
known vector is set to �
 � ���



� (� � �). The regressors are

zero-mean Gaussian, independent in time and space. We compare
the ATC diffusion LMS algorithms (4) equipped with our combiners
and several other existing combiners listed in Table 1, together with
the LMS algorithm without cooperation (i.e., 	�� � � and 	�� � �
for  �� �). For all algorithms, the stepsize of the LMS is set to
�� � ����, i.e., all algorithms use the same LMS algorithm and only
the combiners are different. We also compare the above algorithms
with the incremental LMS algorithm [1], for which the stepsize is set
to �� � ������ because the incremental LMS algorithm uses the
LMS-type iterations � times for every �. For the proposed combi-
nation rule, a uniform weight is chosen as the initial weight and the
stepsize rule (15) with � � ���� and � � ���	 is used. Results of
CTA versions are omitted due to lack of space but we observed that
ATC versions outperform CTA versions for all combiners.

Figure 4 shows the learning behavior of each algorithm in terms
of the network mean-square deviation (MSD):

!network���
�
�

�

�

	�
�
�

!����� !����
�
� �
�
 �����
�,

where !���� is the MSD at node � and the expectation is calculated
by averaging ��� independent experiments. We observe that the pro-
posed algorithm outperforms the other algorithms especially in sce-
nario 2. On the other hand, Fig. 5 shows the steady-state MSD at
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Table 1: Values of ��� for � � �� � ��� for several combination
rules. All rules choose ��� � � �

�
��������

��� and ��� � � for
� �� ��.

Rule ��� for � � �� � ���

Uniform ����

Maximum degree �������� � � � � � ��

Metropolis [5] ��������� ���

Relative degree [4] ���
�
���
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Fig. 3: Network topology (top), SNR (bottom left), and noise vari-
ance ��

��� (bottom right) for � � �� nodes. The SNR at node
� in scenario 2 is ����� dB. The top right figure shows combina-
tion weights for node � in scenario 2 at time ���, i.e., ��������
(� � �� � � � � � ).

0 100 200 300 400 500 600 700
−60

−50

−40

−30

−20

−10

0

Time i

N
et

w
or

k 
M

S
D

 (d
B

)

No cooperation

(Top to bottom)
Maximum deg.
Metropolis
Relative deg.
Uniform

Proposed (circle)
Incremental (box)

(a) Scenario 1

0 100 200 300 400 500 600 700

−50

−40

−30

−20

−10

0

Time i

N
et

w
or

k 
M

S
D

 (d
B

)

Maximum deg.
Metropolis

Incremental

Proposed

Uniform

Relative deg.

No cooperation

(b) Scenario 2

Fig. 4: Learning behavior of network MSDs.

each node, which is obtained by averaging the last 100 samples after
convergence. The performance of our algorithm in scenario 2 is still
as good as scenario 1 in spite of the presence of the noisy node �,
while significant deterioration is observed in the other algorithms.
To see why our algorithm is robust, we show in the top right plot
in Fig. 3 the weights ������ for node �. Compared with the other
static rules, our adaptive combiner successfully puts small weights
for node �, which leads to robustness. In contrast, the performance
deterioration of the relative-degree rule is significant because it puts
weight on node �.

6. CONCLUDING REMARKS

An efficient adaptive combination rule for diffusion algorithms over
adaptive networks has been proposed to improve robustness to the
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Fig. 5: Comparison of steady-state MSDs.

spatial variation in SNR conditions. Although we focused on the
LMS algorithm as the adaptive filter module, combinations with
other adaptive filters are possible. Furthermore, our combiners en-
able us to develop a self-maintaining network, where we can remove
or detect noisy nodes in a distributed manner and maintain the net-
work at a good condition.
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