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ABSTRACT
Adaptive networks (AN) have been recently proposed to address dis-
tributed estimation problems [1]–[4]. Here we extend prior work to
changing topologies and data-normalized algorithms. The resulting
framework may also treat signals with general distributions, rather
than Gaussian, provided that certain data statistical moments are
known. A byproduct of this formulation is a probabilistic diffusion
adaptive network: a simpler yet robust variant of the standard diffu-
sion algorithm [2].

Index Terms— Adaptive filters, distributed estimation, adaptive
networks, diffusion, cooperative systems, distributed adaptive filters

1. INTRODUCTION

In this work we extend the concept of diffusion adaptive networks
[1, 2] to the dynamic topology case, where nodes and links may be
subject to failure. There are several potential applications that may
benefit from these adaptive structures [5]. The proposed framework
allows for data-normalized updates and leads, among other possi-
bilities, to diffusion normalized LMS (dNLMS) and diffusion affine
projection (dAPA) algorithms. The analysis below applies to signals
with arbitrary distributions provided that the data statistical moments
are known. We derive models for the transient and steady-state be-
havior of the diffusion algorithm. The results establish the inter-
esting observation that a probabilistic diffusion protocol enables an
adaptive network to limit communication among nodes to a small
fraction of its full version without presenting a significant decrease
in performance, as illustrated by simulations and theory.

2. DATA-NORMALIZED DIFFUSION ADAPTIVE
NETWORKS

We want to estimate an M × 1 unknown vector wo from measure-
ments collected at N nodes in a network. Each node k has access to
time realizations {dk(i), uk,i}, k = 1, . . . , N , of zero-mean random
data {dk, uk}, with dk(i) a scalar measurement and uk,i a regression
row vector; both at time i. The measurements are assumed to obey
the linear model [6]:

dk = ukwo + vk (1)

where vk is background noise, assumed independent over time and
space and with variance σ2

v,k. In our notation, all vectors are column
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vectors with the exception of the regressors uk, which are chosen as
row vectors for convenience of exposition. We also denote random
quantities by boldface letters (such as {dk, uk}) and use normal font
to refer to their realizations (such as {dk(i), uk,i}).

To estimate wo, we resort to adaptive networks [2, 4]. An adap-
tive network results from equipping the nodes of the network with
local learning rules or adaptive filters. The available communica-
tion topology is then exploited to implement a cooperation protocol
among the nodes in order to efficiently exploit spatial and temporal
information. Different learning rules allied with different cooper-
ation protocols give rise to different adaptive networks. Figure 1
presents an adaptive network operation under a diffusion protocol,
where each node k has a neighborhood Nk,i at time i, defined as the
set of nodes linked to k (including k itself). Each node � ∈ Nk,i

has an estimate ψ
(i−1)
� of wo. The diffusion adaptive scheme works

as follows. First, at node k, an aggregate estimate φ
(i−1)
k is gener-

ated by linearly combining the neighbors’ estimates in order to ex-
ploit spatial diversity and, subsequently, the local estimate is updated

from ψ
(i−1)
k to ψ

(i)
k , i.e.,

φ
(i−1)
k =

�
�∈Nk,i

ck�(i) ψ
(i−1)
�

ψ
(i)
k = φ

(i−1)
k + Hku∗

k,i

�
dk(i) − uk,iφ

(i−1)
k

�
(2)

where the coefficients {ckl} denote a set of local combiners satis-
fying

�
� ck�(i) = 1. Moreover, Hk is a matrix that is generally

dependent on the local neighborhood regression data. For example,
choosing Hk = μkIM leads to the standard dLMS algorithm [2],
while choosing

Hk =
μk

ε + ‖uk,i‖2
IM

leads to a distributed normalized LMS algorithm, or dNLMS for
short. Other choices are possible, such as a distributed affine pro-
jection algorithm (dAPA).

The aggregation mapping leading to φ
(i−1)
k in (2) could be any

general (nonlinear) function of the nearby estimates. One linear
mapping frequently used is the Metropolis rule:

��
�

ck� = 1/ max(nk, n�) if k �= � are linked
ck� = 0 if k and � not linked
ckk = 1 −��∈Nk/k ck� for k = �

(3)

Other possible mappings are the nearest neighbor and the Laplacian
rules.
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Fig. 1. A network with diffusion cooperation strategy.

3. NETWORK GLOBAL MODEL

Algorithm (2) combines the effect of several adaptive filter updates,
and a dynamically changing network topology (since Nk,i and ck,l(i)
can vary with time). In order to analyze the performance of such
systems we resort to state-space representations. We introduce the
global random quantities:

ψi Δ
= col{ψ(i)

1 , . . . , ψ
(i)
N } , φi−1 Δ

= col{φ(i−1)
1 , . . . , φ

(i−1)
N }

Ui
Δ
= diag{u1,i, . . . , uN,i} , di

Δ
= col{d1(i), . . . , dN (i)}

H(Ui)
Δ
= diag

�
H1, H2, . . . , HN

�
which collect the data across all N nodes at a particular time snap-
shot. A global state-space model for (2) is then given by [1, 3]

ψi = Giψ
i−1 + HU∗

i

�
di − UiGiψ

i−1
�

(4)

where Gi = Ci ⊗ IM . This model captures the dynamic network
topology in terms of the combining matrix Ci = [ck�(i)]. It can ac-
commodate several different adaptive algorithms, time-varying net-
works, networks subject to link and node failures, and time delays.
The matrix Ci captures information about the instantaneous network
topology: a nonzero entry ck�(i) means that node k is connected
to node � at time i. Moreover, Ci satisfies CiqN = qN , where
q = col{1, 1, . . . , 1} is N × 1.

4. RANDOM TOPOLOGY MODEL

We will consider undirected graphs (ckl(i) = clk(i)) for simplicity,
but the concepts and derivations extend to directed links as well. We
model the topology dynamics by assuming that the links and nodes
are random entities. We assume that at any given time i, the (now
random) link weight ck�(i), which connects node k to node �, will
assume either a nominal value ck� = c�k with probability pk� = p�k,
or it will be zero with probability qkl:

[Ci]k� =

�
ck� with pk�

0 with qk� = 1 − pk�.
(5)

The nodes are modelled in a similar fashion, with probability of oc-
currence equals to pkk – see Fig. 2. For simplicity, we assume in
this work that a nominal topology C0, comprised of a fixed number
of nodes N and nl links, is subject to link failures1. Thus, the nl

links gives rise to 2nl different subnetworks C� with probability p�

each, comprised of existing and faulty links. The probabilities {pl}
1The case of variable number of nodes will be studied elsewhere.

Fig. 2. Mean topology calculation.

Fig. 3. The subnetworks associated with the nominal matrix C0.

are related to the {pkl}. When a link is removed, a zero is introduced
in the corresponding positions in Ci. When a node is shut down, all
the associated entries are zeroed out in Ci.

In this scenario, we define the mean topology matrices G =
EGi and G = E(Gi � G∗T

i ) where � denotes the block Kronecker
product, namely,

G =
2nl�
�=1

p�G� and G =
2nl�
�=1

p�

�
G� � G∗T

�

�
(6)

where p� = P{Ci = C�}, G� =
�
C� ⊗ IM

�
and � denotes the

block Kronecker product [1], [3]. Figure 3 depicts a simple example
for N = 4 and nl = 3. For instance, the subnetwork C2 happens
with probability p2 = p21q32p43.

5. MEAN TRANSIENT ANALYSIS

Let

w(o) Δ
= qN ⊗ wo and 	ψi Δ

= w(o) − ψi
(7)

From the data model (1) we have di = Uiw
(o) + vi, where vi =

col{v1(i), . . . , vN (i)}. Since Giw
(o) = w(o), by subtracting w(o)

from the left side and Giw
(o) from the right side of (4) we get

	ψi
= (INM − HU∗

i Ui) Gi
	ψi−1 − HU∗

i vi (8)

Assuming temporal and spatial independence of the regressors, and
that the perturbations in the network topology are not correlated with
the captured data and taking expectations of both sides leads to

E 	ψi
=


INM − E

�
HU∗

i Ui

��
EGi E 	ψi−1

(9)
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Fig. 4. Mean network modes for diffusion LMS and diffusion NLMS
in a network with N = 10, M = 5, and white noise with diverse
power across the network [1], [4].

Therefore, the mean evolution of the global weight error vector de-
pends on the data moment EHU∗

i Ui and on the mean topology ma-
trix EGi.

Figure 4 presents the eigenmodes of an adaptive network run-
ning the dLMS algorithm (left) and the dNLMS algorithm (right).
Note how cooperation decreases the modes of the network and en-
hances stability (pkl = p is the probability that link k� exists).

6. MEAN-SQUARE TRANSIENT ANALYSIS

Due to space limitations, we will not present the full derivations here.
Define the global mean-square deviation (MSD) and excess mean-
square error (EMSE) measures as

MSD =
1

N
E‖�ψi−1‖2 and EMSE

1

N
E‖�ψi−1‖2

Ru
(10)

where Ru = EU∗
i Ui. We resort to energy conservation arguments

[3, 4, 6] to derive a model for the network mean-square evolution

in terms of weighted norms of �ψi−1
, i.e., ‖�ψi−1‖2

Σ. For instance,
making Σ = INM or Σ = Ru retrieves (10). We start by defining
the local output estimation error at node k as

ek(i) = dk(i) − uk,iφ
(i−1)
k (11)

and collect the errors across the network into the global vector ei =
{e1(i), e2(i), . . . , eN (i)}, so that

ei = di − UiGiψ
i−1 = UiGi

�ψi−1
+ vi (12)

substituting the weight error vector definitions in (4), together with
(12) yields

�ψi
= Gi

�ψi−1 − HU∗
i ei (13)

Now performing the weighted energy balance on both sides of (13)
for some arbitrary NM ×NM Hermitian matrix Σ ≥ 0, and taking
expectations gives

E‖�ψi‖2
Σ = E‖�ψi−1‖2

Σ′ + Ev∗i UiHΣHU∗
i vi (14)

Σ′ = EG∗
i ΣGi − EG∗

i ΣHU∗
i UiGi

− EG∗
i U∗

i UiHΣGi + EG∗
i U∗

i UiHΣHU∗
i UiGi (15)

where we resorted to commonly adopted independence assumptions
for mathematical tractability. It is important to remark though, that

1
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Fig. 5. Network topology (left) and statistics (right).

these assumptions are made for analysis only, they do not compro-
mise the spatial-temporal nature of the problem, neither its distribu-
tiveness [4]. The recursive variance relation (14) describes the evo-

lution of weighted norms of �ψi
in terms of data statistical moments.

Note that the weighting matrix Σ is implicit in the recursion. There-
fore, to find closed form expressions for the MSD and EMSE we
need to resort to vectorization techniques and block Kronecker prod-
ucts [1], [3], [6]. The derivation is laborious and we will present a
particular solution here for evolving topologies and LMS-type up-
dates observing Gaussian regressors, for which we choose H =
D = diag{μ1IM , . . . , μNIM}. Subsequently we apply a Gaussian

transformation to (14) via ψ
i

= T ∗ �ψi
, Ui = UiT , and Gi =

T ∗GiT , where Ru = TΛT ∗, T is unitary, and Λ = diag{Λ1, . . . , ΛN},
with Λk > 0 and diagonal. These steps lead to a recursion that de-
scribes the mean-square performance of the network in terms of the
free vectorized parameter σ = bvec{Σ}: 2

E‖ψi‖2
σ = E‖ψi−1‖2

Fσ + bT σ (16)

F = G · �I
N2M2 − (INM�ΛD)

− (ΛD�INM ) + (D�D)A
�
σ (17)

where G = E
�
Gi � G∗T

i

�
, b = bvec{RvD2Λ}, Rv = Λv � IM

and Λv = diag{σ2
v,1, . . . , σ

2
v,N}. Choosing σ = bvec{INM} in

(16) gives the MSD. Selecting σ = bvec{Λ} gives the EMSE.

7. PROBABILISTIC DIFFUSION LMS

An interesting variant of the diffusion protocols studied in [1, 2]
arises when we let the nodes communicate only with a subset of
their direct neighbors. By doing so, we may save valuable energy
and communication resources.

It was argued in [4] that the intermediate averaging iterations in
consensus techniques are not necessary, provided that the step-size is
small enough. We now observe that the amount of interaction among
the nodes can actually be reduced to a good extent without degrading
the performance in the mean-square sense.

Figure 5 presents the network settings for a probabilistic diffu-
sion example with the corresponding eigenmodes captured in Fig. 6,
for different values of the link probability p. Despite the fact that
the faster modes are altered by decreasing p (see left plot), the maxi-
mum eigenmode, which ultimately determines the convergence rate,
remains practically unaltered, as depicted in the right plot of Fig. 6.
In all simulations the background noise was set to σ2

v,k = 10−3.

2The M × M blocks of Σ are first stacked onto one single block column

Σ
c

(an N2M ×M matrix); then moving along Σ
c
, each individual block is

vectorized into an M2 × 1 column vector, so that σ is N2M2 × 1.
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Fig. 6. Mean-square network eigenmodes (left) and zoom (right).
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Fig. 7. Global MSD performance for p = 0 (no cooperation), p =
0.1 (probabilistic diffusion) and p = 1 (standard diffusion).
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In Fig. 7 we present the global MSD evolution for p = 1 and
p = 0.1. In other words, in the first case all available links are used;
in the second, only about 10% of the links are employed. Still a
significant improvement over the non-cooperative counterpart is no-
ticed. Figure 8 presents the local MSD evolution for the nodes across
the network. Note the equalization effect in the diffusion curves: de-
spite the quite low cooperation resources, the nodes present a strik-
ingly similar mean-square performance. Figure 9 presents the in-
stantaneous network traffic: the network usage is quite below its full
capacity, which is defined as the number of available links at time i.

We simulated another example with a larger network and with
signals presenting diverse power σ2

u,k and correlation indices αk.

The same noise level σ2
v = 10−3 was employed [1]–[4]. The same

effect takes place: now with considerable improvement even for a
link probability as low as p = 0.01, as Fig. 10 shows.
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8. CONCLUDING REMARKS

As simulations and theory have shown, diminishing the amount of
message exchanges among nodes remarkably does not degrade the
network performance for a wide range of link probability p. In other
words, much less communication resources may be employed to
achieve a pre-defined performance level in diffusion protocols.

We are currently extending the adaptive diffusion protocol [2],
[7] to compensate for node failures.
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