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ABSTRACT

Distributed adaptive algorithms are proposed to address the problem
of estimation in distributed networks. We extend recent work [1]–[2]
by relying on static and adaptive diffusion strategies. The resulting
adaptive networks are robust to node and link failures and present
a substantial improvement over the non-cooperative case asserting
that cooperation improves estimation performance. The distributed
algorithms are peer-to-peer implementations suitable for networks
with general topologies.

Index Terms— Adaptive lters, Distributed estimation, Adap-
tive estimation, Adaptive signal processing, Cooperative systems

1. INTRODUCTION

Distributed networks embedded with cooperative algorithms have
been proposed to address estimation problems that arise in a variety
of applications, such as environment monitoring, target localization
and potential sensor network problems [4].

Recent work has been proposed to address distributed estimation
problems adaptively by relying on limited cooperation and incremental-
like techniques [1, 2]. If computational complexity is not an issue,
more sophisticated learning rules may be employed such as distrib-
uted RLS algorithms [3]. When more communication resources are
available, distributed adaptive algorithms can be derived that exploit
more fully the network connectivity and increase the degree of co-
operation among nodes. In this work we propose an adaptive LMS-
like rule for a diffusion cooperation protocol, resulting in coopera-
tive peer-to-peer estimation schemes that are suitable to operate over
general topology networks.

2. DIFFUSION LMS

We want to estimate anM × 1 unknown vector wo from measure-
ments collected at N nodes in a network (see Fig.1). Each node k
has access to time realizations {dk(i), uk,i}, k = 1, . . . , N , of zero-
mean random data {dk, uk}, with dk(i) a scalar measurement and
uk,i a regression row vector; both at time i. We resort to the concept
of adaptive networks, recently investigated in [1, 2, 3], to perform
the estimation task. An adaptive network results from equipping
the nodes of the network with local learning rules, or local adaptive
lters. The available communication topology is then employed to
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Fig. 1. A distributed network with N nodes.

implement a cooperation protocol among the nodes in order to ef -
ciently exploit spatial and temporal information. Different learning
rules allied with different cooperation protocols give rise to different
adaptive networks.

In this work we motivate and analyze a simple yet ef cient aggregate-
and-adapt diffusion protocol. Assume each node k has an unbiased
estimate ψi−1k ofwo at time i−1. This estimate can be interpreted as
a noisy version of wo, say ψi−1k = wo − ψ̃i−1k for some error ψ̃i−1k .
The neighborhood Nk of node k is de ned as the set of all nodes
linking to it, including itself. By linearly combining the estimates at
the neighborhood of k we may replace ψi−1k by a weighted estimate

φi−1k =
�

l∈Nk
clψ

i−1
l

for some combination coef cients {cl ≥ 0}. This aggregate esti-
mate at node k can be interpreted as a weighted least-squares esti-
mate of wo given the {ψi−1l } at all neighbors of node k. The ag-
gregation step helps fuse information from nodes across the network
(and not just from the neighborhood Nk) into node k. This is be-
cause generally every node inNk tends to have a different neighbor-
hood for connected topologies – see Fig. 1. The resulting aggregate
φi−1k at node k can subsequently be fed into a local adaptive lter
in order to respond to local information and update it to ψik. Analy-
sis and simulations will show that this scheme leads to a robust and
fast distributed adaptive system that achieves smaller error levels in
steady-state than its non-cooperative counterpart (where each node
in the network adapts independently of other nodes and of aggrega-
tion).

The proposed diffusion strategy may be described in general
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terms as follows:

φi−1k = fk
�
ψi−1� ; � ∈ Nk,i−1

�
(1)

ψik = φi−1k + μku
∗
k,i

�
dk(i)− uk,iφi−1k

�
(2)

for some local combiner fk (·) and step-size μk. The combiners may
be nonlinear or even time variant, to re ect, for instance, changing
topologies or to respond to non-stationary environments. The neigh-
borhoods Nk may also be time-variant. The resulting adaptive net-
work is a peer-to-peer estimation framework that is robust to node
and link failures and exploits network connectivity.

In order to illustrate the technique, we explore a linear combiner
model. At node k, the aggregated estimate φi−1k is generated by
linearly combining the neighbors’ estimates, i.e.,

φi−1k =
�
�∈Nk

c(k, �) ψi−1�

ψik = φi−1k + μku
∗
k,i

�
dk(i)− uk,iφi−1k

�
(3)

for a set of local combiners ck satisfying
�

� c(k, �) = 1 and as-
suming xed neighborhoods Nk.

Fig. 2. A network with diffusion cooperation strategy.

3. STABILITY IN THE MEAN

Algorithm (3) embeds the combined effect of several adaptive lter
updates, in addition to the network topology. Hence, performance
analysis is challenging. However, the following analysis sheds some
interesting insights on the role of cooperation and network topology
on system performance. We resort to state-space representations.
We introduce the global quantities:

ψi Δ
= col{ψi

1, . . . ,ψ
i
N} , φi−1 Δ

= col{φi−1
1 , . . . ,φi−1

N }
Ui

Δ
= diag{u1,i, . . . , uN,i} , di = col{d1(i), . . . , dN (i)}

in terms of the stochastic quantities whose realizations appear in (3).
LetD = diag{μ1IM , μ2IM , . . . , μNIM} be a diagonal matrix col-
lecting the local step-sizes. The measurements are assumed to obey
the linear model [5]:

dk(i) = uk,iw
o + vk(i) (4)

where vk(i) is background noise, assumed independent over time
and space and with variance σ2v,k. A global representation for (3) is
then given by

φi−1 = Gψi−1

ψi = φi−1 +DU∗i
�
di − Uiφ

i−1� (5)

or, in a more compact state-space form:

ψi = Gψi−1 +DU∗i
�
di − UiGψ

i−1� (6)

where G = C ⊗ IM is the transition matrix and C = [c(k, �)] is a
diffusion combination matrix. The matrix C has information about
the network topology: a nonzero entry c(k, �) means that node k
is connected to node �. Moreover, C satis es CqN = qN , where

qN
Δ
= col{1, . . . , 1}. Let

w(o) Δ
= qN ⊗ wo and �ψi Δ

= w(o) − ψi (7)

Furthermore, from the data model (4) we have di = Uiw
(o) + vi,

with vi = col{v1(i), . . . , vN (i)}. Moreover, since Gw(o) = w(o),
by subtracting w(o) from the left side and Gw(o) from the right side
of (6) we get

�ψi
= Gw(o) −Gψi−1 −DU∗i

�
Uiw

(o) + vi − UiGψ
i−1
�

= G�ψi−1 −DU∗i
�
UiG�ψi−1

+ vi
�

(8)

or, equivalently,

�ψi
= (INM −DU∗i Ui)G�ψi−1 −DU∗i vi (9)

Assuming temporal and spatial independence of the regressors and
taking expectations of both sides leads to

E �ψi
=
�
INM −DRu

�
G E �ψi−1

(10)

where Ru = diag{Ru,1, . . . , Ru,N} is block diagonal and Ru,k =
Eu∗k,iuk,i. Henceforth, for stability in the mean we must have that

��λ�(INM −DRu)G
��� < 1 (11)

In other words, the spectrum of (INM − DRu)G must be strictly
inside the unit disc. In the absence of cooperation (i.e., when nodes
evolve independently of each other), the mean error vector would
evolve according to

E �ψi
=
�
INM −DRu

�
E �ψi−1

with coef cient matrix B = (INM −DRu). Thus, in the adaptive
network case, even convergence in the mean will effectively depend
on space-time data statistics and network topology (represented by
G). For simplicity, assume that D = μINM so that B is Hermitian.
Using matrix 2-norms we have

‖BG‖2 ≤ ‖B‖2 · ‖G‖2 (12)

That is, σmax(BG) ≤ σmax(B) · σmax(G) [6], where σmax is the
maximum singular value of the corresponding matrix. For combin-
ers that render stochastic and symmetric matrices C, the matrix G
will also be symmetric and stochastic so that σmax(G) = 1. But
since σmax(B) = |λmax(B)| and |λmax(BG)| ≤ σmax(BG), we
conclude that

|λmax(BG)| ≤ |λmax(B)| (13)

That is, the spectral radius ofBG is generally smaller than the spec-
tral radius ofB. Hence, cooperation under the diffusion protocol (3)
has a stabilizing effect on the network.
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One such combiner is the Metropolis rule. Let nk and n� be the
degree for nodes k and �, i.e., nk = |Nk|. We have
��
�
c(k, �) = 1/max(nk, n�) if k �= � are linked
c(k, �) = 0 if k and � not linked
c(k, k) = 1−��∈Nk/k c(k, �) for k = �

(14)

Other possible rules are the Laplacian and the nearest neighbor rules,
given respectively by

C = IN − κL and c(k, ·) = 1

|Nk| (15)

where L = D − Ad, with D = diag{n1, . . . , nN}, Ad is the net-
work Laplacian and κ = 1/nmax. The Laplacian rule renders a con-
tracting matrix [7], hence also decreasing the network convergence
modes (See Fig. 7, right plot).

Naturally, convergence in the mean is only a necessary condition
for convergence in the mean-square sense, which will be addressed
in a complementary paper, but it gives important insights about the
network behavior operating under diffusion protocols.

4. ADAPTIVE DIFFUSION LMS

This strategy can be understood as an adaptive layer implemented
over the existing network of adaptive lters, constituting an adap-
tive diffusion protocol. Instead of combining “blindly” the estimates
from the neighborhood, a better policy is to weigh them according
to their respective individual performance.

Fig. 3. A simple adaptive diffusion strategy.

There are many ways to design the combiner fk in (1). We ex-
tend [8] to the network case. Each node k generates φi−1k as

φi−1k = λkψ
i−1
k + (1− λk)ψi−1k (16)

where ψ
i−1
k is a linear combination of the neighbors’ estimates

ψ
i−1
k =

�
�∈Nk/k

c(k, �)ψi−1� (17)

The resulting φi−1k is presented to the local adaptive lter

ek(i) = dk(i)− uk,iφi−1k (18)

ψik = φi−1k + μ u∗k,iek(i) (19)

The convex combiner λk(ak) ∈ [0, 1] is a real activation function at
our choice and depends on a parameter ak that is adapted to mini-
mize the local error (see Fig. 3), say as1

ak = ak − μa
�∇a|ek|2

�∗
(20)

1Time index will be dropped for compactness.
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Fig. 4. Example 1: Network topology and statistical pro le.
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Fig. 5. Transient global EMSE and steady-state EMSE per node.

Choosing λk = 1

1+

��exp(−ak/2)
��2 and using (16)–(19) results in

ak = ak + μa
u∗k,i
‖uk,i‖β

	
ψi−1k − ψi−1k



ek(i)λk (1− λk)

where β is a non-negative normalization parameter inspired by nor-
malized LMS algorithms [5].

There are different ways to construct adaptive diffusion algo-
rithms. We present here a pilot design to illustrate the concept: mul-
tilevel and clustered adaptation may substantially bene t the whole
network.

We rst compare diffusion LMS with the non-cooperative case,
in which the adaptive lters evolve independently consulting only
their own past estimates. We use the global average excess mean-
square error (EMSE) as a gure of merit, de ned as

ζg(i) =
1

N

N�
k=1

ζk(i)

where ζk(i) = E |uk,i(wo − ψi−1
k )|2 is the local EMSE at node

k. We also examine the network performance in steady-state by in-
specting ζk(∞) at every node. Network topology and statistics are
randomly generated and 100 experiments are performed in each ex-
ample. The regressors follow a local rst order Markov process with
power σ2u,k and correlation index αk. We adopt the Metropolis rule
for the combiners.

For the rst example we consider a network withN = 10 nodes
whose topology and statistics are depicted in Fig. 4. Every node
runs adaptive lters with μ = 0.015 and M = 10 taps. Figure 5
(left) shows the global learning behavior and the network individual
EMSE pro le in steady-state (right). Note how the diffusion network
presents a better performance.

In the second example we investigate the robustness of the diffu-
sion protocol. A network withN = 12 nodes is set up with adaptive
lters containing M = 10 taps, μ = 0.04 and σ2v = 10−3. The

topology and statistical pro le are presented in Fig. 6. The step-
size μ was not carefully designed, so that in the non-cooperative
scheme some nodes did not converge uniformly, causing the global
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Fig. 6. Example 2: Network topology and statistical pro le.
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Fig. 7. Transient global EMSE and the spectrum of both non-
cooperative and diffusion cases.

network error to increase. Nevertheless, in the diffusion coopera-
tive scheme the global error remained under control and no spikes
were observed. As Fig. 7 shows (left), cooperation is more robust
and leads to improvement in network performance. The right plot in
Fig. 7 reveals the spectrum (11) of both non-cooperative and diffu-
sion protocols for the Laplacian and Metropolis rules. Note how the
eigenmodes of the diffusion LMS are substantially smaller than the
non-cooperative case. The Metropolis rule is even smaller than the
Laplacian. The spectral radius ρ of both diffusion rules is smaller
than the non-cooperative case: the diffusion protocol has a stabiliz-
ing effect over the network.

The operation of the adaptive diffusion scheme is illustrated in
Figs. 8 and 9. For this example σ2v = 10−3, μ = 0.01, μa = 40 and
β = {2, 6}. Note in Fig. 9 (left) that adaptive diffusion is faster than
the standard diffusion protocol, but with slightly larger error (5dB
@ -55dB) due to the extra adaptive layer (gradient noise). However
this effect can be balanced by designing β, although convergence
gets slightly slower. The right plot shows the corresponding MSE2

evolution: adaptive diffusion is faster and the mismatch in steady-
state is not noticeable. Figure 10 shows the adaptive weights λk for a
few nodes. A weight close to one means that the corresponding node
is performing better than its neighborhood’s estimates, e.g., nodes
7 and 10. Likewise, nodes 2 and 5 were assigned small weights,
meaning they are performing worse than the aggregated neighbors’
estimates. Note how nodes with higher SNR, e.g., nodes 7 and 10,
were assigned larger weights and nodes with lower SNR, e.g., nodes
2 and 5, were assigned smaller weights.

5. CONCLUDING REMARKS

We have proposed diffusion adaptive schemes to perform distributed
estimation in a cooperative fashion. The schemes result in peer-to-
peer algorithms suitable for general topologies and robust to link and
node failures. Besides robustness and spatial diversity, diffusion pro-
tocols improve the network estimation performance. The diffusion
techniques can also be extended to recursive least-squares formula-

2De ned as ξg(i) =
�N

k=1 E|ek(i)|2.

1

2

34

5

6

7

8 9

10

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Node  k

N
et

w
or

k 
S

ta
tis

tic
s

σ
u,k
2

α
k

Fig. 8. Example 3: Network topology and statistical pro le.
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tions [3]. Analysis in the mean-square sense is available but will be
approached in a complementary publication due to space constraints.
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