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ABSTRACT

Combination approaches can improve the performance of adaptive
schemes. In this paper, we study the steady-state performance of
an adaptive convex combination of transversal filters and show its
universality in the sense that the combination performs, in steady-
state, at least as well as its best component. We specialize the
results to a convex combination of LMS filters using energy con-
servation arguments.

1. INTRODUCTION

Combination approaches can be used to achieve improved adaptive
filter performance [1, 2, 3, 4]. In this paper we study the adaptive
convex combination scheme of [5, 6], which obtains the output of
the overall filter as – see Fig. 1:

���� � ��������� � ��� ���������� (1)

where ����� and ����� are the outputs of two transversal filters
at time � (i.e., ����� � �

�

� �������� � � �� �, ��

� ��� being
the weight vectors characterizing the component filters and ����
their common regressor vector) and ���� is a mixing non-negative
scalar parameter. The idea is that if ���� is assigned appropriate
values at each iteration, then the above combination will extract
the best properties of filters����� and�����.

We consider the case in which both component filters are inde-
pendently adapted, using their own design rules. Thus, for general
transversal schemes we have

����� �� � f� ������������ ����� p����� � � � �� � (2)

where ���� stands for the desired signal, p
�
��� is a state vector,

and f���� refers to the adaptation function. For simplicity, we shall
assume in the following that ����� and ����� are equal length
filters, so that the overall filter can also be thought of as a transver-
sal filter with weight vector

���� � ��������� � �� � ���������� (3)

For the adaptation of the mixing parameter ���� we shall use
a stochastic gradient rule that minimizes the quadratic error of
the overall filter, ����� � ������ ������. However, instead of
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Fig. 1. Adaptive convex combination of two transversal filters.
Each component is adapted using its own rules and errors, while
the mixing parameter, ����, is selected to minimize the quadratic
error of the overall filter.

directly modifying ����, we will adapt a variable ���� that de-
fines ���� via a sigmoidal function, i.e., ���� � sgm������ ��
� � ������

���

. The update equation for ���� is given by

���� �� � �����
��

�

	�����

	����
(4)

� ���� � ������ ������� ������ ���� ��� �����

Note that the factor ������� ����� reduces the adaptation speed,
and consequently the gradient noise introduced by (4), near ���� �
� or ���� � �. However, the update for ���� could stop when-
ever ���� is too close to these limits. To circumvent this difficulty,
we restrict the values of ���� to lie inside an interval ����� ���,
which limits the permissible range of ���� to ��� ��� ��� where
�� � sgm���� is a constant close to 1.

In the rest of this paper we carry out a statistical analysis of the
steady-state performance of the combination procedure (1)-(4); in
particular, we will show that it is nearly universal [7], in the sense
that it can perform as close as desired to its best component, and,
in certain situations, better than any of them.

2. STEADY-STATE PERFORMANCE

We adopt the following assumptions, which are usually realistic
for many applications:

� ���� and ���� are related via ���� � �
�

� ���� � �����,
for some unknown weight vector�� and where ����� is an
independent and identically distributed (i.i.d.) noise, inde-
pendent of ��
� for any � and 
, and with variance ��� .
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� The initial conditions �����,����� and ���� are indepen-
dent of ������ ����� ������ for all �.

� ������� � 0, �������� ���� � R, ������� � �, and
�������� � �.

It is also convenient to introduce some notation and additional vari-
ables:

� Weight error vectors: ����� � �� � ������ � � �� � for
the component filters, and ���� � �� � ���� for their
combination.

� A-priori errors: ������� � �
�
� �������� � � �� �, and �����

� �
� �������.

� A-posteriori errors: ������� � �
�
� �� � ������� � � �� �,

and ����� � �
� ��� ������.

� Output error: ���� � ����� ����.

To measure filter performance it is customary to use the excess
mean-square error (EMSE), which is defined as the steady-state
excess over the minimum achievable error (���). When analyz-
ing steady-state operation, we are mainly interested in the lim-
iting value as � goes to �. It can be easily seen that ���� �
����������� and the EMSE of the filters (isolated and combined)
can be calculated as:

	������� � ��	
���

������������ � � �� � (5)

	����� � ��	
���

��������� (6)

2.1. Steady-state EMSE of the combination

To obtain an expression that relates the EMSE of the overall filter
to those of its components we subtract both terms of (1) from ����
and find that

���� � 
�������� � 
�� 
���������

� 
���������� � 
�� 
����������� � �����
(7)

where ����� � ����� �����. Likewise,

����� � 
���������� � 
�� 
����������� (8)

Now, taking the limit of ��������� as � goes to� we have

	����� � ��	
���

�
�


������������ � 
�� 
�������������

��
���
�� 
������������������� (9)

The appearance of a cross-expectation term between the mixing
parameter 
��� and the a-priori errors of the component filters in
(9), together with the fact that the equation governing the adaption
of ���� is nonlinear in 
���, makes the exact evaluation of (9) a
difficult task. However, there exist two cases in which 	�����
could be evaluated in a simpler manner:

� If ����� �� as ��� a.s. (almost surely), then 
����

� a.s. and (9) could be simplified to

	����� � 

��

	������� � �� � 

���	�������

� �
���� 

��	��������

where we have defined the cross-EMSE of the two filters as
	�������� � ��	��������������������. Then, using
the fact that 
� is close to one, we conclude that

	����� � 	������� (10)

where the approximation is as accurate as desired by in-
creasing the value of ��.

� Similarly, if ���� � ��� as � � � a.s., we conclude
that

	����� � �� � 

���	������� � 


��
	�������

� ���� 

��
�	��������	�������

(11)

i.e.,
	����� � 	������� (12)

So let us examine the steady-state behavior of ����. Taking ex-
pectations of both sides of (4), we arrive at

������ ��� � (13)


�������� ����
���
�� 
��������
������ ��������
��

���

where the square brackets denote truncation to the indicated val-
ues, as explained after (4). Note that this is only an approximation
since we have switched the order of the expectation and the trun-
cation operators on the right-hand side. The approximation seems
reasonable because the likelihood of ���� before truncation be-
ing much higher than �� or much lower than ��� is small. To
see this, note that the closer ���� is to the limits, the smaller the
magnitude of the update factor 
���
�� 
����.

Now, introducing (7) into (13), and using the relation ������
����� � ������� � �������, we obtain an expression relating the
adaptation of the mixing parameter to the a-priori errors of the
component filters:

����� � ��� � 
����� ��� �
��� 
�������� � ������

� ���
�

��� 
�������� � ���������

�

����
�


���� 
���������� � �

�
����

����
���

(14)

where, for compactness, we have omitted the time index � in the
right hand side of the expression.

In (14), the expectation term depending on ����� vanishes as a
consequence of ����� being independent of the other factors inside
the expectation and �������� � �. Regarding the expectations in
the second and third lines, they can be simplified by using the fol-
lowing reasonable assumption.

Assumption. In steady-state, 
��� is independent of the a pri-
ori errors of both component filters.

Thus taking the limit as ���, Eq. (14) becomes

����� � ��� �
�
�������� ���

�

���
�� 
�����

�
�	�

����
�


����
�� 
����

�
�	�

���
���

 ��� (15)

where we have defined

�	� � 	�������� 	��������� � � �� � (16)

which measures the difference between the individual EMSEs and
the cross-EMSE.

Eq. (15) shows that the limiting value of ������� depends on
the values of �	�� � � �� �. It is useful to distinguish among three
different situations:1

1From the definition of ���������, and from Cauchy-Schwartz in-
equality, it can be seen that the magnitude of ��������� cannot be si-
multaneously higher than the EMSEs of the two component filters.
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1. �������� � ��������� � ��������. In this case, we
have��� � � and��� � �. Furthermore, both���������
������� and ��������� � ������ are lower bounded by
����� ����. It follows that we can assume

������ ��� � ��������� ���
�

���
� ��� (17)

with � being a positive constant. Therefore, the only valid
stationary point for (15) is ������� 	 ��. But since
���� � ����� ���, this suggests that ���� 	 �� a.s.
As we have already explained, when this occurs we have
������ � ��������, and the combination performs like
its best component filter.

2. �������� � ��������� � ��������. Now, we have
��� � � and ��� � �, allowing us to write

������ ��� � �������� � ���
�

���
� ��� (18)

for a positive constant �. Applying parallel arguments to
those in the previous case, we conclude that ���� 	 ���

and ������ � ��������. Again, the behavior of the over-
all filter is as good as its best element.

3. ��������� � ��������� � 	 �� 
. When the cross-EMSE
is lower than the EMSE of the two individual filters, we
have ��� 	 �� � 	 �� 
, and a stationary point of (15) may
be approximately characterized by the condition

��������� ���������� 	

���������� ���������� ��� (19)

It is difficult to derive from the above relation an expres-
sion for ����� 	 ������������. Further understand-
ing about the performance of the system can be obtained by
assuming (only for this third case) that the variance of ����
is small for ���. Proceeding in this way, it is immediate
to obtain:

��� ��������� 	 �������� (20)

from which we can set

����� 	

�
���

��� ����

���
����

(21)

so that

�� � ����� 	 �
�� if �������� � ��������

�
� 	 ����� � �� ��� if �������� 	 ��������

For ����� 	 �� and ����� 	 � � �� we already know
that the performance of the combination is that of its best
component. However, for intermediate values of ����� in
(21), the overall filter need not converge towards the best
component. This behavior of the mixing parameter does not
imply that the combination is suboptimal in this third case.
In fact, the behavior may be superior to both component
filters. Indeed, it can be verified that the value for �����
in (21) (neglecting the truncation) is the one that minimizes
(9) under the assumption of zero variance for ����:

������ 	 �������������� � �� � ���������������

� 
�������� ���������������

Introducing (21) into this expression, we get after some al-
gebra

������ 	 ��������� �
������

��� ����
(22)

so that, since ����� � �, the following bounds hold:

������ 	 ��������� � �������� � ��������

������ 	 ��������� � ��� ��������� � ��������

i.e.,
������ � ������������ ��������� (23)

In summary, the above three cases allow us to conclude that the
combination procedure (1)-(4) is nearly universal, i.e., its steady-
state performance is as close as desired to its best component filter
(for a sufficiently high ��). Furthermore, when certain conditions
are met, the combination outperforms both components.

The above steady-state analysis of the combination scheme (1)
applies to general adaptive filters (2). The analysis did not assume
any particular form for the update function ���	�. To study the over-
all filter performance for a particular update of ����� and �����
it is enough to derive expressions for the associated EMSEs and
cross-EMSE. We will do so in the following section for a convex
combination of LMS filters operating in a stationary scenario; it
will turn out that the third scenario described above does not arise
in this case; though it occurs for nonstationary environments and
for some other filter combinations.

3. COMBINATION OF LMS FILTERS

In this section we study the stationary performance of an adaptive
convex combination of two LMS filters (CLMS), which only differ
in their step-sizes. Designing criteria for hard switching the step-
size of an LMS filter (in a variable step-size implementation) is
generally challenging; in this sense, CLMS could be thought of as
an effective method for (softly) discriminating between the best of
the �� and �� step-sizes.

Without loss of generality, we will assume that �� 	 �� so
that the first filter adapts faster. Using the energy conservation
approach of [8, Ch. 6], and assuming that at steady-state operation

����
� is independent of �������, it is known that the EMSEs of
the LMS components are given by [8, Eq. (6.5.11)]

�������� 	
��

�
�Tr�R�


� ��Tr�R�
� �� �




Tr�R�
(24)

which, in passing, we note that it is an increasing function of ��
over �� � 
�Tr�R�.

To derive an expression for ��������� we will proceed from
[8, Eq. (6.3.7)] which relates the weight, a-priori and a-posteriori
errors of a general class of adaptive filters:

����� �� �
����


����
�
������� 	 ����� �

����


����
�
������� (25)

Multiplying the transpose of (25) by (25) itself for � 	 � and 2,
respectively, we arrive at the following generalized energy conser-
vation relation:

�
�
� ��� ������� �� �

��������������


����
�
	

�
�
� �������� �

��������������


����
�
(26)
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Fig. 2. Steady-state theoretical and estimated cross-EMSE of two
LMS filters for different values of �� and �� � ����.

Taking expectations, and using the fact that in steady-state

����� ��� ������� ��� � ����� �������������

we get

�

�
��������������

�������

�
� �

�
��������������

�������

�
���� (27)

The above expression holds for any filters����� and�����. When
these are restricted to the LMS case, it can be shown that their a
priori and a-posteriori errors are related via [8, Eq. (6.3.3)]

������� � �������� ��������
������� � � �� � (28)

Introducing (28) into (27), and multiplying terms we get

������������
� ����������� � �����������������

� ������������������ ��� (29)

Now, using ����� � ������� � �����, and using the independence
of ����� with respect to the other variables, we get

��������� �
���
�

�
������������������������ � 	��Tr�R�

�
as � goes to�, where we have defined

��� � ����������� � ��� (30)

Finally, and using again that ������� is independent of ������� in
steady-state, the cross-EMSE of the filters is given by

��������� �
���	

�
�Tr�R�

�� ���Tr�R�
(31)

The similarity that exist between (31) and (24), together with the
fact that �� � ��� � ��, allows us to conclude that �������� �
��������� � ��������, so we are in the second of the situations
considered in Section 2. Consequently, the mean-square error of
the CLMS filter is approximately equal to that of the ��-LMS fil-
ter: ������ � ��������.

Figure 2 plots expression (31) for different values of �� and
�� � ����. The settings of the example are 
 � 	, ��

� �

������� ��������������, and ����� and ���� are independent
zero-mean Gaussian processes, with variances 	�� � ���� and
	�� � �, respectively. Each estimated cross-EMSE was calcu-
lated by averaging �������������� for 20000 iterations after the
convergence of both LMS filters, and over 25 independent runs.
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Fig. 3. Transient and steady-state performance of an adaptive com-
bination of two LMS filters (�� � ��� and �� � ����) with
parameters �� � ��� and �� � �.

In Figure 3, we have depicted the transient performance of
the adaptive combination of two LMS filters with �� � ��� and
�� � ����. The parameters of the combination have been set
to �� � ��� and �� � �, while the weight vectors have been
initialized with zeros and the mixing parameter to ���� � ��.
All displayed results have been averaged over 1000 independent
runs. Initially, CLMS retains the faster convergence of the ��-
LMS. However, as predicted by our analysis, its steady-state per-
formance is equivalent to that of the LMS with step-size ��.

4. CONCLUSION

Combination approaches can help improve adaptive filters perfor-
mance. In this paper we analyzed the behavior of one such ap-
proaches, showing that it performs as close as desired to the best
of its components, and, possibly, better than any of them.
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