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Abstract— In this paper, we propose resource allocation strate-
gies for a class of wireless networks with a clustering protocol.
The nodes are assumed stationary and establish connections with
the master node according to a priority scheme that relates
to their distances from the master node. The paper considers
bandwidth allocation with soft and hard constraints, as well
as power allocation strategies. Simulation results illustrate the
performance of the proposed strategies.

I. INTRODUCTION

Utility based pricing and resource allocation strategies have
received considerable attention in recent years (see, e.g., [1]–
[5]). In these and other related works, several measures of
fairness have been proposed. In this paper, we propose adap-
tive bandwidth allocation strategies that minimize proportional
blocking probabilities (as defined in the sequel) for a class
of ad-hoc wireless networks. We also propose a propor-
tionally fair power allocation method for the nodes. Both
these resource allocation issues are addressed for a wireless
network that adopts a clustering protocol. The protocol is
summarized as follows. The space is divided into M + 1
virtual geographical cells, each containing N nodes with one
additional node acting as a master node. A frequency slot is
allocated to each node that wishes to communicate with the
master node in a cell. We allow for frequency reuse across
cells in a manner similar to that in mobile cellular systems.
The master nodes perform important tasks like routing and
congestion control for high data rate communications, as well
as handling some data processing and network information
for nodes connected to them. Being a master node is power
consuming and hence the nodes are made to take turns as
master nodes with equal probability, but with the constraint
that there can be only one master node in a cell at any time.
Priority to be a master node is given to the node that has lowest
interference from other cells. The nodes communicating in the
same frequency slot in other cells cause interference with this
cell and this interference is measured in terms of the signal-to-
interference ratio (SIR) defined as follows. The SIR for node
i at time k on an uplink channel is defined by

γi(k) =
Giipi(k)∑

j∈A
Gijpj(k) + σ2

(1)

where, for each time instant k, Gij denotes the channel gain
from the j−th node to the intended master node of the i−th
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Fig. 1. A schematic representation with three cells, three master nodes, and
active and interfering nodes. The active node is node i and the interfering
nodes are nodes j and k from other cells.

node, pi is the transmission power from the i−th node, and
σ2 is white Gaussian noise power at the receiver of the master
node that node i is connected to. Moreover, A denotes the set
of all nodes that are interfering with node i from all cells - see
Fig. 1. We assume that the transmission power of each node
at every instant satisfies Pmin ≤ pi(k) ≤ Pmax.

A packet is transmitted from a source to its final destination
through intermediary master nodes. We assume that each node
has a buffer of sufficient size to store routed packets. The
operation of the nodes in any cell follows a periodic cycle.
Each cycle starts with a set-up phase when a node is chosen as
a master node. The set-up phase is followed by a transmission
phase during which all nodes in a cell that can communicate
with the master node send their packets through available
frequency slots. In the set-up phase, every node in a cell
expresses its desire to be the master node with a probability
that is equal to all nodes. When there is contention, the node
with lowest interference power from other cells is chosen as
the master node. Once a particular node is chosen as a master
node, it lets all other nodes know through a broadcast in that
cell that it is the master node for the current cycle. At the
end of this set-up phase, it is decided based on the number
of available frequency slots, say Ql, for cell l, which nodes
connect with the master node during the transmission phase.
Nodes express a desire for connection with probabilities that
are inversely proportional to their distances from the master
node. If the number of nodes that express a desire to connect
with the master node is more than Ql, then the master chooses
Ql nodes that are closest to it. Note that the number of slots
Ql in a cell l denotes the bandwidth available to that cell.
We assume that each of the frequency slots has the same
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Fig. 2. Nodes beyond a radius R do not cause interference with the nodes
inside a cell of radius r.

bandwidth.
In the transmission phase, routing decisions occur. We

assume that the nodes in a cell are uniformly distributed inside
a circle of radius r. Only nodes that use the same frequency
slot as a particular node i in other cells cause interference with
node i. We assume that these interfering nodes are located
within radius R from the master node that i is connected to.
We also assume that each geographical cell is surrounded by
M other cells within an area Ac and that these cells can cause
interference as shown in Figure 2. We shall subsequently rely
on the following definition.

Definition: The blocking probability in a cell l is defined
as Prob(Z̄ > Ql), where Z̄ is the average number of
nodes that express a desire to connect with the master node
and Ql is the number of frequency slots available in the cell. ♦

The rest of the paper is organized as follows. In section
II, we propose a strategy to allocate the available frequency
slots to different cells in the network without placing a hard
constraint on the total number of frequency slots. We do this
by first deriving a utility function in terms of a proportional
blocking probability across cells and optimizing this function
with respect to the number of frequency slots in each cell. In
section III we use a similar utility function as in section II,
but include hard constraints involving the number of frequency
slots. In section IV, we describe a power allocation strategy
for the nodes in the network.

II. BANDWIDTH ALLOCATION WITH SOFT CONSTRAINTS

Consider a cell l in the network and let us order the nodes
in the cell from i = 1 to i = N . Let Bi denote the event that
node i expresses a desire to connect with the master node.
Without loss of generality, we assume that the events {Bi}
are independent. Let BN denote the sigma algebra formed by
the events {B1, .....BN}. Let

ZN =
N∑

i=1

I(Bi)

where I(Bi) is the indicator function; it is equal to 1 if event
Bi occurs and 0 otherwise. The variable ZN denotes the total
number of nodes that express a desire to connect with the

master node; its value is a function of N . Let Zk =
k∑

i=1

I(Bi)

denote the number of nodes that express a desire to connect
with the master node if there were instead k nodes in the
cell. We first recall the following lemma.

Lemma 1 (Azuma’s Inequality [6]) Suppose {Y0 =
0, Y1, Y2, Y3, ....} is a martingale sequence such that for each
k, |Yk − Yk−1| ≤ ck, where ck may depend on k. Then, for
all k ≥ 1 and for any µ > 0,

P (Yk ≥ µ) ≤ exp

⎧⎨
⎩−µ2/

⎛
⎝2

k∑
j=1

c2
j

⎞
⎠

⎫⎬
⎭

where P (·) denotes probability of the event. ♦

It can be shown that Yk defined by

Yk = Zk −
k∑

i=1

P (Bi) (2)

with Y0 = 0, is a martingale. Here P (Bi) denotes the probabil-
ity of event Bi. Moreover, it can be seen that |Yk−Yk−1| ≤ 1.
It can be assumed under mild assumptions that for the protocol
described in the previous section, there exists a positive scalar
α < 1 such that

k∑
i=1

P (Bi) <
1

1 − α
(3)

Now applying Azuma’s inequality with µ = Ql − 1/(1 − α),
we get

P

{
Yk ≥ Ql − 1

1 − α

}
≤ exp

{
− (Ql − 1

1−α )2

2k

}
(4)

which implies that

P

{
k∑

i=1

I(Bi) ≥ Ql

}
≤ exp

{
− (Ql − 1

1−α )2

2k

}
(5)

Considering that cell l has N nodes, we get

P

{
N∑

i=1

I(Bi) ≥ Ql

}
≤ exp

{
− (Ql − 1

1−α )2

2N

}
(6)

In other words, the probability that a node in cell l is blocked
is upper bounded by the right hand side of (6). We now allow
each cell l to maximize the following utility function:

U(Ql) = µl

M+1∑
l=1

⎧⎪⎨
⎪⎩1 − exp

⎛
⎜⎝−

(
Ql − 1

1−α

)2

2N

⎞
⎟⎠

⎫⎪⎬
⎪⎭

−νl

{
Q −

M+1∑
l=1

Ql

}2

(7)

where µl and νl are proportionality constants. The first term
in the above utility function proportionally minimizes the



probability that a node is blocked in every cell and the second
term imposes a soft constraint on the total number of frequency
slots to be Q. Since the utility function is continuous and
concave in each of the variables Ql, for Ql > 1

1−α , it admits
an equilibrium in the region Ql > 1

1−α , l = 1, 2, ...., M + 1.
The following gradient ascent algorithm seeks the equilibrium
[9]:

Ql(k + 1) = Ql(k) + 2ενl

{
Q −

M+1∑
l=1

Ql

}

− 1
N

εµl

{
Ql − 1

1 − α

}
× exp

⎧⎪⎨
⎪⎩−

(
Ql − 1

1−α

)2

2N

⎫⎪⎬
⎪⎭ (8)

with initial conditions Ql � 1/(1 − α), l = 1, 2, ..., M + 1,
and where ε is a positive step size. The actual number of slots
in each cell will be chosen as the closest integer to each of
the Ql in equilibrium.

III. BANDWIDTH ALLOCATION WITH HARD CONSTRAINTS

We now consider an alternate optimization problem that
optimizes a utility function with hard constraints on the
bandwidth. The constraints also incorporate the scenario of
finite buffer capacity in a master node. Let T be the time span
of the transmission cycle between a node in a cell and its
master node. Let f denote the rate of transmission of each
node in bits per second. Then the amount of data received by
the master node in this interval is

Ql × f × T

Let the available buffer during a transmission cycle in a cell
l be bl. We then pose the following optimization problem
assuming a fixed rate of transmission f by all nodes. We seek
the optimal Ql as follows:

max
{Ql}

M+1∑
l=1

µl

⎧⎪⎨
⎪⎩1 − exp

⎛
⎜⎝−

(
Ql − 1

1−α

)2

2N

⎞
⎟⎠

⎫⎪⎬
⎪⎭

subject to
QlfT ≤ bl, l = 1, 2, ..., M + 1

M+1∑
l=1

Ql ≤ Q

where Q is the total number of frequency slots available in
the network. Let P denote the set

P = {Ql : QlfT ≤ bl, l = 1, 2, ..., M + 1}
We propose the following modified Poljak (steepest ascent)
algorithm [7]–[9] to seek the equilibrium values of Ql. Con-
sider positive sequences {αk} and {βk} with the following
properties:

lim
k→∞

αk = 0, lim
k→∞

βk = 0
∞∑

k=1

αk = ∞,

∞∑
k=1

βk = ∞, lim
k→∞

αk

βk
= 0

An example of such a pair of sequences is αk = 1/k, βk =
1/

√
k. We then update the bandwidth in the following manner.

At each iteration k,

if
M+1∑
l=1

Ql(k) ≤ Q

Ql(k + 1) = [Ql(k) + αkU ′(Ql(k))]P
else

Ql(k + 1) = Ql(k) − βkε (9)

with initial conditions Ql � 1/(1 − α), l = 1, 2, ..., M +
1, where [.]P denotes projection onto the set P and ε is a
small positive constant. The projection operation is such that if
QlfT > bl, then Ql is chosen to satisfy QlfT = bl. Moreover,
U ′(.) denotes the derivative of the following utility function
with respect to Ql:

U(Ql) =
M+1∑
l=1

µl

⎧⎪⎨
⎪⎩1 − exp

⎛
⎜⎝−

(
Ql − 1

1−α

)2

2N

⎞
⎟⎠

⎫⎪⎬
⎪⎭

It can be shown in a manner similar to [7] that the above
algorithm converges to the equilibrium that maximizes the
given utility function.

IV. JOINT POWER AND RATE ALLOCATION

Consider a particular frequency slot. Let i = 1, 2, ..., M +1
index the nodes that are transmitting at this frequency slot in
all cells. Let pi denote the power at which node i transmits to
the respective master node in its cell. Let fi denote the flow
rate at node i. Now, in view of Shannon’s capacity formula
[10], the flow rate fi demands an SIR level γi that is given
by

fi =
1
2

log2[1 + γi] (10)

Let x̄i denote the dB value of a variable xi, namely x̄i =
10 log xi. Now, usually, during normal network operation,
γi � 1 and, hence, fi in (10) is proportional to γ̄i. We can
then pose the following utility maximization problem for fi

and pi:

max

{Pmin ≤ pi ≤ Pmax}

(
M+1∑
i=1

κi(γ̄i − δipi)

)

where δi is a positive constant and the {κi} are proportionality
factors. The above utility function maximizes the rate by
restricting the power consumption in a soft manner. Note that
the above problem has an equilibrium since the cost function
is continuous and concave in each of its variables pi; each
pi belongs to a convex set. We again call upon the modified
Poljak algorithm as given in the previous section:

pi(k + 1) = [pi(k) + αkU ′(pi(k))]S (11)

to update the power levels of the individual nodes where now

U(pi) =
M+1∑
i=1

κi(γ̄i − δipi)



and γi depends on pi as in (1). Moreover, S denotes the set

S = {pi : Pmin ≤ pi ≤ Pmax, i = 1, 2, ....M + 1}
with [.]S being a projection onto S. The projection onto S sets
pi to pi = Pmax if pi > Pmax and pi = Pmin if pi < Pmin.

V. SIMULATIONS

To illustrate the convergence of the algorithm in Section
II, we distribute the frequency slots to three cells with a soft
constraint on the total number of slots to be Q = 400. Figure
3 shows the convergence of the frequency slots to equilibrium
values by using (8). The simulation parameters chosen for the
utility function are:

µ1 = 0.1, µ2 = 1, µ3 = 0.1, ν1 = 0.1, ν2 = 0.2, ν3 = 0.15

and ε = 0.1. Figure 4 illustrates the performance of the
algorithm in section III. The simulation parameters for Figure
4 are

fT = 1, Q = 700, αk = 1/k, βk = 1/
√

k, bl = 300

for l = 1, 2, ..., M + 1. Figure 5 shows the convergence of
the power levels for three mutually interfering nodes in three
different cells that use the same frequency slot. Here, Pmax =
10 and Pmin = 0.1.
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Fig. 3. Convergence of the number of frequency slots within a three cell
network using algorithm (8).
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