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ABSTRACT 

Most analytical results on affine projection algorithms assume spe- 
cial regression models or Gaussian regression data. The avail- 
able analyses also treat different aftine projection filters separately. 
This paper provides a unified treatment of the transient perfor- 
mance of a family of affine projection algorithms. The treatment 
relies on energy conservation arguments and does not restrict the 
input data to being Gaussian or white. Simulation results illustrate 
the analysis and the derived performance expressions 

1. INTRODUCTION 

The normalized least mean-squares (NLMS) algorithm is among 
the most widely used adaptive filters due to its computational sim- 
plicity and ease of implementation. However, colored input sig- 
nals can deteriorate its convergence speed appreciably. To address 
this problem, Ozcki and Umeda [ I ]  developed the basic form of 
an affine projection algorithm (APA) using affine subspace projec- 
tions. While NLMS updates the weights based only on the current 
input vector, APA updates the weights based on K previous input 
vectors. Since [ I ] .  many variants of APA have been devised inde- 
pendently from different perspectives such as the regularized APA 
(R-APA), the partial rank algorithm (PRA) [2], and NLMS with 
orthogonal correction factors (NLMS-OCF) [3]. Wc shall refer to 
all these algorithms as belonging to the APA family. 

The transient behavior of affine projection algorithms is not as 
widely studied as that of NLMS. The available results have pro- 
gressed more for some variations than others, and most analyses 
assume particular models for the regression data. For example, 
in [4] convergence analyses in the mean and in the mean-square 
senses are presented for the binormalized data-reusing LMS (BNDR- 
LMS) algorithm. Although the results show good agreement with 
simulations, the arguments are based on a particular model for the 
input signal and are applicable only to second-order APA. Like- 
wise, the convergence results in [3] focus on NLMS-OCF and rely 
on a special model for the input signal vector. A convergence anal- 
ysis given in [5] allows the evaluation of leaming curves assuming 
a Gaussian autoregressive input model. 

In this paper, we provide a unified treatment of the transient 
performance of the APA family. In  particular, we derive expres- 
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i o n s  for the mean-square error and leaming curves, as well as 
conditions on the step-size for mean-square stability. Our deriva- 
tion relies on energy conservation arguments [6]-[10] and it does 
not restrict the regression data to being Gaussian or white. Simu- 
lations at the end of the paper illustrate the derived results. 

2. DATA MODELS AND APA FAMILY 

Consider reference data { d ( i ) }  that arise from the linear model 

d ( i )  = u;wo + .(i) (1) 

where W O  is an unknown column vector that we wish to estimate, 
w(z )  accounts for measurement noise, and U, denotes 1 x M row 
input (regressor) vectors with a positive-definite covariance ma- 
trix, R, = E [ufui]. In this paper, we focus on a general class of 
affine projection algorithms for estimating W O  of the form 

wI =w;-~-~(~-,) + f i ~ l ; ( t l + U z ~ , * ) - l e ,  (2) 

where ei = d; - U ~ W . - I - ~ ( K - ~ ) ,  w, is an estimate for W O  at 
iteration a ,  @ i s  the step-size and 

Different choices of the parameters { K ,  E ,  cy, D }  result in different 
affine projection algorithms. Table 1 defines the parameters for 
some special cases. For example, the choices c = 0, a = 0, and 
D = 1 result in the standard APA 

w* = w,-1+ fiu;(uiU;)-'e, 

For NLMS-OCF, it is further assumed that u i - j ~  is orthogonal to 
u;,u*-D,' . .  ,u%-(;-I)D. For PRA, it is understood that wm = 
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Table 1. APA family where {cy: K, D }  are integers. 
1 1  Algorithm I K I t I a I D ]  
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~ , - ~ . f o r m = i - l , . . .  ,i-K,i.e.,theweightvectorisupdated 
once every K iterations. In our discussions, K can he greater 
than M and the only restriction on K is K > 0, although most 
algorithms assume K 5 M .  

3. TRANSIENT ANALYSIS OF APA 

We now study the transient (i.e., learning curves, steady-state be- 
havior and stability) performance of the APA family. To do this, 
we rely on energy conservation arguments. 

3.1. Weighted Energy Relation 

We shall assume, without loss of generality, that a = 0. Then (2) 
becomes 

(3) w. , - - wi-1 ~ &(cI + U,u,*)-'e, 

In the following analysis if we substitute w,-l by then 
the results for a # 0 would be obtained. If we multiply both sides 
of the above recursion by U;C from the left, for any Hermitian pos- 
itive matrix C. we find that the a priori and a posreriori estimation 
errors {e;,,,e:,,} are related via: 

e;,, = efi ~ ~ U , C U : ( C I  + U"U;)-'e, (4) 

where e& = U,Cwi and e:,, = U~CW,-I. Solving for e ,  and 
substituting into (3). we get 

On each side of this identity we have a combination of a priori and 
a posreriori errors. If we equate the weighted Euclidean norms of 
both sides of ( 5 )  we find that 

~ ~ ~ , ~ ~ $ + e $  (U;CUT)-1e2,i = 

llw;-$ +e;: (u,cu:)-' e;,, ( 6 )  

where \li+.ll% = i+;XW,. The important fact to emphasize is 
that no approximrions have been used to establish the energy re- 
lation (6);  it is an exact relation that shows the energies of the 
weight-error vectors at two successive iterations. are related to the 
weighted energies of the a priori and a posreriori estimation er- 
ror. Relation (6)  is an extension to the APA case of the energy 
conservation relation originally derived in [6]  in the context of ro- 
bustness analysis and subsequently used in [7]-[10] in the context 
of steady-state and transient performance analysis. 

3.2. Weighted Variance Relation 

In transient analysis we are interested in the time evolution of 
EIIW;ll%. for some desirable choices of C (e.g., C = I or C = 
Ru). Under the often realistic assumption that 

A . l  The noise v(i) is i.i.d. and srarisrically independenr of the 
regression morrix {U,} 

neglecting the dependency of w i - 1  on past noises, expressing 
{e,,,., e:,<, e:,,} in terms of *,-I and taking expectations ofboth 
sides, relation (6) becomes 

E [Ilwill:] = E [ll.tt-il l&] + p 2 E  [v:Afvi] (7) 

where 

C' a c - pCU;(rI  + u,U:)-'U, 

- p U ~ 5 ( c I +  UiU;)-'U,C + p z  (U;AfU,) 

and 
a A: = + ~ n : ) - ~ u m r ; ( ~ ~  + u,u:)-~ 

The expectation E [l\W;-llI$,] in (7) is difficult to evaluate due 
to the dependence of C' on U, and of wi-1 on prior regressors. 
One common way to overcome this difficulty is to introduce an 
independence assumprion on the regressor sequence U,, namely, 
to assume that 

A.2 The matrix sequence {U;}  is independent and idenrically 

This assumption guarantees that Si-I is independent of both C' 
and U,. Clearly, A.2 is a strong assumption (it is actually stronger 
than the usual independence assumption, which only requires the 
{ut} to be i.i.d.). Observe from the expansion for C' that it is 
sufficient for our purposes to require 

A.2' wiui-1 isindependentofU:(rI+ U;U,*)-'U; 

disrribured. 

which is a weaker assumption and more likely to hold. In this way, 
recursion (7) reduces to 

where now 

E' = C - p C E  [U:(rI + U,U~)~lU;] 
-pEIU,*(cl+U,U:)-lU,] C + p 2 E  [U:A:U;] 

with expectations appearing in C'. Also taking expectations of 
both sides of (3) and using assumption A.1, we obtain the follow- 
ing result for the evolution of the mean of the weight-error vector: 

E [e,] = E [I ~ pUr((e1 + UsU;)-'U,] E[i+j-l]  (9) 

Relations (8) and (9) can he used to derive conditions for mean- 
square stability, as well as expressions for the steady-state MSE 
and mean-square deviation (MSD) of the APA family, 

Using the following property of the Kronecker product of ma- 
trices. 

vec{PEQ} = (QT c3 P)vec(C) 

and introducing the vector notations U' = vec{C'} and U = 
vec{C}, we find that' 

where the coefficient matrix F is M 2  x M 2  and given by 
U' = F u  (10) 

F = I - p ( E [ P ? ]  @ I + I @ E [ P ; ] )  +p2E[P? OP,] (11) 

with 
Pi = U ; ( d  + U;U;)-lU; 

We can rewrite the recursion for E [Ilwi115] in (7) by using the 
vectors {U', U} instead of the matrices {C', C} as follows 

E [ l l * i I l $ e ~ ~ ~ > ]  = E [ l l * i -~ l l~ec~ .+~]  + p  2 2  ~ ~ ( 7  T U )  (12) 

'The vet(.) operation stacks the columns of a matrix into a vector. 
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where, for the last term. we used the fact that 

Tr (E [ ( c l  + U,U$*)-'U,CU,*(d+ U<U;)-']) = y*a 

where y = vec{E [U:(d  + U,U:)-'Ui]}. For compactness of 
notation, we drop the vet{.} notation from the subscripts and keeo 
the vectors, so that the above is simply rewritten as 

E [Wi] = (I - p E [ P i ] ) E  [Wi-I] 

Also we obtain the following result for the evolution of the mean 
of the weight-error vector: 

(14) 

3= 

Recursion (13) shows that in order to evaluate E [llW,ll~] we need 
to know E [ ~ ~ W ~ + ~ ~ $ o ] ,  with a weighting matrix whose entries 
are determined by Fa. Now the quantity E [11W.11$-] can be in- 
ferred from (13) by writing the recursion for Fa, i.e., 

E [ll'.iIl$,] = E [ I IWi- i  l I$av]  + p 2 d ( y T F a )  

We again find that in order to evaluate E [IlWill$,] we need to 
know E [llW;-~ l l : 2 n ] .  Fortunately, as in [9], this procedure ter- 
minates. This is because any matrix F satisfies p ( F )  = 0 where 

p(z) = det(z1- F) 

denotes its characteristic polynomial, say 

p(x) =xh'z +p,*_,xMz-'+...+plx+pO 

Theorem I [Transient performance] UnderassumprionsA.1 
and A.2. the rronsienfperfomnnce ofthe APA family (2) for a = 0 
is described by the stare recursion 

- 0  1 . _ .  . . .  0 - 
0 0 1 . . .  0 

. .  : 

0 0 0 . . .  1 
. -Po -p, -pz . . .  -pM2-1 

where 

Observe that the eigenvalues of F coincide with those of F .  

3.3. Learning Curves 

The learning curve of an adaptive filter describes the time evolu- 
tion ofthe variance Ele,(i)lz. Now if the {U;} are assumed to be 
i.i.d., then 

Elea(i)12 = E[IU.W,-~/~] = E[IIWi-1 lla,] 
the learning curve can be evaluated by computing E[lliV,-~ lla,] 
for each i. This task can be accomplished recursively from relation 
(13) by iterating it and setting r = vec(R,). This yields 

E[II+II:] = E  [ l lw-~ l l$~]  +p2ag ( y T ( I + . ' . +  F"')r) 
(15) 

That is, 

(16) E [ I lWi - i I l~ ]  = E  [llW-d?,-,] + p 2 u h ( i  - 1) 

where the vector f, and scalar g(i) satisfy the recursions 

E - 1  = Ffi-2 
T 

g(2 - 1) = g(i - 2) + y f;-l 
with initial condition fo = r a n d  g(-1) = 0. 

3.4. Mean-Square Stability 

From (14) the convergence in the mean of the APA family is guar- 
anteed for any p satisfying 

Moreover. recursion (13) is stable if, and only if, the matrix F is 
stable. ThusletC = E [ P T ] @ I + I @ E [ P , ] a n d D  = E[PT@P;] 
so that F = I - pC + p2D. The following holds (see [9]. 

sense of the APA family is guaranteed for any p in the range 

1 

Theorem 2 [Stability] The convergence in the mean~square 

l }  [ Xmax(C-lD)' max(X(H) E a+) 0 < < min 

where H = [ 'I" 2 -t" 1. The above condition on p is in 

terms of the largest positive eigenvalue of H when it exists. By 
combining (17) and Theorem 2, a bound on the step-size for both 
mean and mean-square stability is obtained. 

3.5. Steady-State Behavior 

Assuming the step-size p is chosen to guarantee filter stability, 
recursion (13) becomes in steady-state 

E [IIW-lI?] = E  [II'.-Il$.] +p2a: (yTa)  (18) 

which is equivalent to 

(19) 
E [I lW.mllfr-~,~] = fi 2 2  a"(? T U )  

Assume that we select a as the solution to the linear system of 
equations (I-F)u = vecjl}. In this case, the weighting quantity 
that appears in (19) reduces to the vector of unit entries. Then the 
left-hand side of (19) becomes the filter MSD and (19) leads to 
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is a first-order autoregressive (AR) process with a pole a1 T. For 
the Gaussian case, p ( i )  is a white, zero-mean, Gaussian random 
sequence having unit variance and T is set to 0.9. As a result, 
a highly colored Gaussian signal is generated. For the uniform 
case, p ( i )  is a uniform random sequence between -1.0 and 1.0 
and r is set to 0.9. The signal-to-noise ratio (SNR) is calculated 
by SNR = 1010g(E[y2(i)]/E[uZ(i)]) where y(i) = u,wO. The 
measurement noise v ( i )  is added to y(i) such that SNR = 30dB. 
The adaptive filter and the unknown channel are assumed to have 
the same number of taps. All adaptive filter coefficients are initial- 
ized to zero. Also, the regulaization parameter L is set to 0.001, 
We set a = 0, p = 1.0 and D = 8. The simulation resulu shown 
are obtained by ensemble averaging over 200 independent trials. 
Fig.1-2 shows the learning curves for both the theoretical and the 

".l@*mnu" simulation results. 

Fig. 1. Learning curves of the APA family for colored Gaussian 
input using p = 1.0 and D = 8 (a) K = 1 (h) K = 2 (c) K = 4 
(d) K = 8 

Fig. 2. Learning curves of the APA family for colored uniform 
input using p = 1.0 and D = 8 (a) K = 1 (b) K = 2 (c) K = 4 
(d) K = 8 

In a similar way, since 

we can determine the EMSE by evaluating E [[I woo 1 1 2 ]  , where 
the weighting factor is r = vec{R,}. Assume we select 5 as the 
solution to the linear system of equations ( I  ~ F ) 5  = r. In this 
case, the weighting quantity that appears in (19) reduces to R,. 
Then the LHS of (19) becomes the filter EMSE and (19) leads to 
the desired result 

4. SIMULATION RESULTS 

We illustrate the theoretical results presented in this paper by car- 
rying out computer simulations in a channel estimation scenario. 
The unknown channel has 16 taps. Two different types of sig- 
nals, viz., Gaussian and uniformly distributed signals, are used 
for the input signal, u(i), viz., u( i )  = ru(i - 1) + p(i)which 

5. CONCLUSIONS 

Using energy conservation arguments, the paper analyzed the steady- 
state and transient performances of the APA family and derived 
stability conditions without restricting the regression data to being 
Gaussian or white. 
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