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ABSTRACT 

Among the challenging issues that affect the performance of wire- 
less location techniques is the temporal and spatial variations of 
the channel, and the distribution of the scatterers, which introduce 
non-line-of sight errors at the base station. This paper develops a 
technique for addressing this problem by exploiting the topology 
of the cellular network. 

\ 1. INTRODUCTION 

The US. Federal Communications Commission (FCC) has made 
E91 1 a mandatary requirement for wireless communications ser- 
vices [l]. E91 I requires all 91 1 calls from mobile telephones in the 
U S .  to be located within certain accuracy in order to route calls to 
the appropriate emergency service provider. Besides emergency 
assistance, this service will trigger many location-based services 
within the wireless network. One of the difficulties that affects 
the performance of location techniques is the temporal and spatial 
variations of the channel. and the distribution of scatterers. which Fig. 1. A schematic of a cellular network topology with four BSs. 

introduce non-line-of-sight errors at the BSs. This paper presents 
an algorithm for equalizing the NLOS problem by using a con- 
strained optimization formulation that exploits the topology of the 
cellular network. We assume we have measured the time-of-arrival 
(TOA) and the angle-of-arrival (AOA) of the mobile station (MS) 
at the base station (BS) using some known algorithms (e.g., [2,31). 
We then use the information from several BSs, and a data fusion 
scheme, to equalize these noisy measurements and to arrive at an 
improved location estimate. 

2. PROBLEM FORMULATION 

Fig. I shows a representation of a cellular system assuming four 
BSs. In the figure, we define the cellular system features as fol- 
lows: 

("y): mobile location. 

(gi): ith base station location. 

e T;:  the distance from the MS to the ith BS. 

e a;: the angle of anival from the MS to the ith BS 

8,: angles due to the BSs topology. 

dej: the distance between ith and j t h  BSs. 

The location of a mobile station can be determined from knowl- 
edge of these features. For instance, we know that 7, = ( t .  - 
t,)C, where C is the speed of light (3 x 108rn/s) and, moreover, 

2 r; = (x. ~ 2 , ) 2  + (Yi - Y"J2 

If we take the first BS as the origin of the coordinate system (i.e., if 
we set X I  = yl = 0), then the location of the MS can be estimated 
via the least-squares solution: 

(1) 

2 2  K,' = x. + y i  

In practice, we only have access to noisy measurements of { r , ,  a,}, 

say R; = ri + N,, I 4; = a, i Nms (2) 

The noises {Nr<, N m i }  consist generally of two components each  
a line-of-sight (LOS) term that arises from measurement noise, and 
a non-line-of-sight term that arises from the temporal and spatial 
variations of the channel, and the distribution of scatterers. We 

t,: the time of arrival of the MS signal at the ith BS. 

t,: the time of transmitting the signal from the MS. 

shall therefore write 
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Nvs = LOS,+NLOS, (3) 
Ne, = LOS, + NLOS, 

and we will comment on the distribution of these noises in Secs. 4 
and 5 .  Our scheme for enhanced location accuracy will be based 
on formulating a constrained optimization problem that reduces 
the effect of noises on location accuracy. The constraints will he 
a reflection of the topology of the cellular network. Thus consider 
again the cellular system shown in Fig. 1. The constraints are the 
distances between the BSs, which are given by 

d:z = T: + r i  - 2 ~ i r 2  cos(yi) (4) 

dil  = T: + v i  - Zrqrl cos(74) 

d:, = r? + T,' ~ 27'17'3 cos(yi + 7 2 )  

d;4 = T ;  + ~ 4 '  - 2 ~ 4 ~ 4  COS(% + 74) 
where the 7's are functions of the a's and H's. This formulation 
is easily extendable to the case of n BSs. Then we can pose the 
problem of estimating the noises {N-<, Ne,} by solving 

( 5 )  
and, for the cross nodes, 

N = a r g m i n x  (2)'+ (2)2 (6)  
%=I 

N 

subject to 
d:2 = ( R I  - N,,)'+ (Rz -A',,)' - 

2(Ri - NFl)(R2 -A'->) 
C O S ( K  ~ ($1 -Ne, + ( H z  - ($2 ~ Ne2)))) 

d:3 = (RI  - Nr,)' + (Rs -N,,)' - 

2(Ri ~ Nv-,)(R3 - 
 COS((^  ne, + ( H z  ~ ($2  - Ne2))) t 
($2 - N-2 + (83 - ($3 -Ne, ) ) ) )  

where N = (N,,, N,, , . . . , N,,, Ne,, N,,, . . . , Nan)T is a 
vector of length 2n, c:, is the variance of the distance error and 
a& is the variance of the angle error (both at the ith BS). If we con- 
sider NFs and Ne; as Gaussian noises, then (6) is the maximum- 
likelihood estimation of Nys and Nmt. There me some known 
methods for calculating the variances U:< and ais  (see, e.g. [5,  6, 
71). These methods usually use the time history of errors, or the 
scattering model of the environment. to estimate the standard de- 
viations. Specifically, the methods assume that the noises change 
faster than the MS distance from the BSs, so that the { T ~ ,  ai} in (2) 
can he assumed to he constants during estimation. The variance of 
the noises is then the same as the variances of the measurements R; 
and 4,. So assume we collect K measurements (say K zz 400). 
Then, from [SI, 

U?< = C ( R i ( n )  - F.,)', where U?, = R,(n) 

Likewise for 02, .  Minimizing (6) results in estimates of distance 
and angle noises, which i? turn lead to estimates for { T ~ ,  ai} as 

(7)  

1 K-l  
K - I  

n=0 n=0 

6; = R, - Nps, 6i = 4% - NOT 
Using these equalized values in (I), will result in improved loca- 
tion accuracy. 

3. OPTIMIZATION METHOD 

For the solution of the constrained optimization problem (6), there 
are several well developed numerical algorithms. We shall use the 
SQP (Sequential Quadratic Programming) method [9], which es- 
sentially reduces a nonlinear optimization problem with nonlinear 
constraints to a sequence of constrained least-squares problems. 
The implementation consists of three main steps: 

Updating the Hessian matrix of the Lagrangian function. 
Solving a constrained least-squares problem. 
Line search and merit function calculation. 

More specifically, using (6), we can denote the objective function 
and the constraints as: 

f (N) : objective function in (6). 
g i ( N )  = 0 : constraints in (6). say for i = 1,. . . ,mc. 

N = (Nr,:Nr2,... ;NT.t,Nal,Nm>,... ,A'=,) 
The associated Lagrangian function is 

m e  

L(N, A) = f ( N )  + Aigi(N) 
"=I 

The solution is determined iteratively as 

Nk+i = Nk + F k d k  

where d k  is the search direction that is obtained by solving the 
constrained least-squares problem: 

min -dTHrd + V f ( N I , ) T d  
1 

dtR" 2 
s.t. V g i ( N k ) T d  + g i (Nk)  = 0 i = 1, ...., m, 

where H~ = V ~ L ( N , A ) I ~ = ~ ~  
or, equivalently, 

min l d T H d  + cTd 
dEE" 2 

s.t. aid = b, i = 1, ..., me 

where a,  = V g i ( N k ) T ,  bi = -gi(Nk) and c = Vf(NI)*. 
The solution d i  is be obtained from solving the linear system of 
equations: 

(2 A;) (2) = (5) (8) 

where b is a vector containing the { b , }  and A is a mamx of the 
{a i} .  The step size p k  is chosen in a way that causes sufficient 
decrease in a merit function. There exist many different forms of 
merit functions, e.g., p ( N )  = f (N)  + xzl g,?(N). 

do 
Update HI, 

dk  = a r g m i n d { $ d T H k d + V f ( N k ) T d :  

Vg,(NI,)Td + gi(Nk) = 0 i = 1, ' '  ' ,me}  

p*=linesearch(cp(Nx, A k ) ,  d s )  

Nk+i = Nk + Fkdk 
k = k + l  

until convergence 

return(Nk, A*)  

We have used the Matlab optimization toolbox for solving (6). 
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4. TOA ERROR DISTRIBUTION 

We now comment on the distribution of the LOS and NLOS er- 
rors. The LOS error in distance measurements is modelled as zero 
mean Gaussian distribution with standard deviation between 30 
and 60 meters. The NLOS error distribution can be deduced from 
the probability density function of the propagation delay between 
direct path and other paths. An exponential model has been inves- 
tigated in [ IO] ,  

1 e-* T > O  
P(T) = { (9) 

otherwise 

where T is the NLOS delay, T,,, is therms delay spread, which 
has a lognormal distribution and depends on the environment pa- 
rameters. Using the model in [ I l l ,  i,,, = T~d'p ,  where TI is 
the median value of the rms delay spread at one kilometer, d is 
the distance between the MS and the BS, c is the path loss expo- 
nent (PLE) with value between 0.5 and I, p is a lognormal variable 
(such that 10 log p is a zero mean Gaussin variable with standard 
deviation op that lies between 4-6 dB). Typical parameters for dif- 
ferent type of environments are given in the following table: 

5. AOA ERROR DISTRIBUTION 

The LOS error in AOA measurement can be modelled as zero 
mean Gaussian with standard deviation of approximately 3 de- 
grees. The NLOS AOA error can be considered as a zero mean 
Gaussian random variable with standard deviation 5-10 degrees 
for different environments. An estimate for this standard deviation 
is given in 1121 as oa = %, where C is speed of light, d is the 
distance between the MS and the BS, and T is the TOA delay in 
(9). 

6.  SIMULATION RESULTS 

For the simulation environment we consider four BSs. with 1 Km 
distance between them. We assume we have the measurements 
of AOA and TOA. For NLOS BSs, we add TOA noise according 
to (9) and a Gaussin noise with standard deviation of 45 meters 
as the LOS error. For AOA error of the NLOS BSs, we use a 
zero mean Gaussian noise with standard deviation given in Sec. 5 ,  
and a zero mean Gaussian noise with standard deviation 3 degrees. 
We consider the cases with 4 out of 4 NLOS BSs and 3 out of 4 
NLOS BSs. To get the average over estimation errors, we choose 
400 uniform random points in the plane and simulate 150 differ- 
ent NLOS and LOS noises for each point. The figures show the 
comparison between our equalization method, a traditional equal- 
ization scheme from [4], and using measured data without any 
equalization. The scheme from [4] uses the noisy measurements 
Ri to estimate the MS location by solving 

'.S 

00 <m zm 3w Im sw Em ,m am WO ,mo ,,W 
Me*, 

Fig. 3. The CDF of location error for NLOS noise models given in 
Secs.4 and 5 when there is 1 LOS BS and 3 NLOS BSs. 

where 11 . /I denotes the Euclidean norm and or, is the standard 
deviation of the distance error at the ith BS. To initialize our sim- 
ulation we find the MS location using raw data and (I), then we 
use the mobile location to initialize the least-squares equation us- 
ing (IO), and then use the obtained location to initialize the con- 
strained optimization (6). We have also simulated some bad situa- 
tions when the NLOS error is more than the assumed models (e.g., 
when the MS is inside a building). To model this error, we con- 
sider the given models in Secs. 4 and 5 ,  but we amplify the AOA 
and TOA noises 3.3 more than before. 

7. SUMMARY 

As shown in the figures, the performance of the proposed con- 
strained equalization scheme is superior to other schemes, espe- 
cially in bad urban environments with higher NLOS noises. It also 
performs well in LOS situations, but we see dramatic performance 
improvement in NLOS cases. 
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Fig. 4. The CDF of location error for three times higher than 
NLOS noise model given in Secs.4 and 5 when there is no LOS 
BS. 

Fig. 5. 0.67 and 0.95 threshold point in location error for NLOS 
noise model given in Secs. 4 and 5. Methods from 3 to 1 are using 
raw data, using equation (IO) and using constrained equalization. 
The environments 1-4 correspond to Bad Urban, Urban, Suburban 
and Rural. 

Fig. 6. 0.67 and 0.95 threshold point in location ermr for three 
times more than NLOS noise model given in Secs. 4 and 5 .  Meth- 
ods from 3 to 1 are using raw data, using equation (IO) and using 
constrained equalization. The environments 1-4 correspond to  Bad 
Urban, Urban, Suburban and Rural. 
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