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ABSTRACT 
The steady-state performance of adaptive equalizers can 
significantly vary when they are implemented in finite preci- 
sion arithmetic, which makes it vital to analyze their perfor- 
mance in a quantized environment. In this paper we present 
a fixed point analysis for the steady-state mean square error 
(MSE) of a blind adaptive equalizer and the optimal value 
of the step-size that minimizes this MSE. Such expressions 
are useful for selecting the adequate wordlength of a blind 
equalizer to achieve a specific desired steady-state perfor- 
mance. 

1. INTRODUCTION 

In this paper, we derive expressions for the steady-state 
mean square error (MSE) of a blind adaptive equalizer and 
the optimal value of the step-size that minimizes this MSE. 
We focus on the constant modulus algorithm (CMA), which 
is among the most widely used algorithms for (fractionally- 
spaced) blind equalization [I, 21. Its update equation is 
highly nonlinear, which makes it difficult to evaluate the 
steady-state MSE using conventional techniques that are 
used for analyzing the steady-state performance of adaptive 
filtering algorithms in general. A major feature of the ap- 
proach proposed herein is that it bypasses the need for work- 
ing directly with an update equation for the weight-error 
vector. This is achieved by exploiting an energy-preserving 
relation that in fact holds for a general class of adaptive 
algorithms (e.g., [3, 4, 51). Throughout the paper, we use 
the channel-equalizer model used in [2, 61. We focus on 
fractionally-spaced equalizer implementations due to their 
inherent advantages (see, e.g., [I, 21). 

A blind adaptive equalizer w is one that attempts to ap- 
proximate a zero forcing equalizer WO without knowledge of 
the channel impulse response c and without direct access to 
the transmitted sequence {s(.)} itself. A zero forcing equal- 
izer leads to an overall channel-equalizer impulse response 
of the form 

hD = ejs  col[o, ..., O , I , O ,  ..., 01 , j = f l  (1) 

for some constant phase shift 8 E [0,27~], and where the unit 
entry is in some position D. Thus under such conditions, 
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the output of the channel-equalizer system will be of the 
form y(i)  = s ( i  - D)eJe ,  for some {D, 8). 

Approximating the zero forcing solution is achieved by 
seeking to  minimize certain cost functions whose global 
minima generally occur at the location of zero forcing equal- 
izers. The most popular adaptive blind algorithms are the 
so-called constant modulus algorithms [7]. They are derived 
as stochastic gradient methods for minimizing the cost func- 
tion: 

where y(i )  = Uiw is the equalizer output, U, is an input row 
vector (regressor) to the equalizer, Rp is suitably chosen in 
order to guarantee that the global minima of JCM (w) occur 
a t  zero forcing solutions (see, e.g., [7]). In this paper we 
focus on the following stochastic gradient variant, known as 
CMA2-2, or simply the CMA. In this case, we select p = 2, 

and the update equation for the weight estimates is given 
by 

(2) wi+l = wi + / J U ~  fe( i )  

where 

f e ( i )  = ~ ( i )  [Rz - I~(i) l ’ ]  (3) 

with a step-size p .  The row vector ui is the input data 
regressor to the adaptive equalizer and y(i)  = uiwi is the 
output of the adaptive equalizer. The symbol * denotes 
complex conjugate transposition. 

Since this algorithm is based on instantaneous approx- 
imation of the true gradient vector of the cost function 
JcM(w), the equalizer output y( i )  need not converge to a 
zero forcing solution of the form s( i -D)ejs  due to the pres- 
ence of gradient noise. Therefore, the steady-state mean- 
square-error, 

is often used as a performance index of the adaptive equal- 
ization algorithm. Moreover, in finite precision implementa- 
tions, quantization of the various equalizer quantities intro- 
duce errors that can cause the performance of the equalizer 
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to vary significantly from the expected performance in the 
infinite precision case. In this paper we evaluate the MSE 
of a blind equalizer in a quantized environment, without 
directly using the weight error vector i+; = wo - w,. 

2. A QUANTIZED MATHEMATICAL MODEL 

Figure 1 shows the quantized model used in the paper. Sim- 
ilar models have been used in the context of finite precision 
analyses of adaptive algorithms. In this figure, &[e] de- 
notes the fixed point quantization of the value x, and the 
superscript q distinguishes quantized quantities from infi- 
nite precision quantities. Throughout the paper, rounding 
quantization is considered. I t  is also assumed that the satu- 
ration thresholds of the quantizers are properly chosen such 
that saturation errors are negligible. Thus, only rounding 
errors are considered. The variance U' of the rounding error 
is related to the quantizer saturation threshold L according 
to 

where it is assumed that the quantizer uses B bits in ad- 
dition to a sign bit. The values of B and L considered for 
quantization of the data (U;, d ( i ) ,  and y(i)) will be denoted 
by Bd and Ld and the ones considered for quantization of 
the equalizer coefficients will be denoted by B, and L,. The 
corresponding values of U' will be denoted by U: and U:, 

respectively. We can write 

yQ(i) = ufwf + 7( i )  (4) 

where ~ ( i )  is the quantization error that occurs in comput- 
ing the term ufwf. The variance of ~ ( i ) ,  ut, depends on the 
procedure by which y"(i) is computed. If all N products in- 
volved in uPwf are computed with high precision, summed, 
and the final result is quantized to Bd bits, then U: is ap- 
proximately equal to U;. If each one of the N products is 
quantized to, say B, bits, and the sum is then quantized to 
Bd bits with B, being significantly greater than Bd, U: is 
equal to U: +Nu: .  Moreover, the quantized error function 
of the CMA is given, from (3), by 

where R; = Q [Rz], and e l ( i )  and e z ( i )  are two quantization 
errors of variances U: = U: = U:. Taking the above quanti- 
zations into effect, the CMA update equation becomes 

where mi is a vector of multiplication quantization errors 
in the update term puf*f ,Q(eq( i ) ) ,  each entry of which has 
variance U:. The weight error vector is now defined as 

, Y q W  s(i) Channel Q[xl Equalizer 

- - _ _ _ _ _ _ _ _ . I  

CMA Error function 

Figure 1: CMA quantization model. 

3. QUANTIZED ENERGY RELATION 

Based on the quantization model of the previous section, 
we now derive an energy preserving relation for quantized 
CMA. This energy relation will be used in the next section 
to derive a MSE expression for the quantized CMA. 

Introduce the a-priori and a-posteriori estimation er- 
rors, 

ea(i) = s(i  - D)eie - y q ( i )  = ufwp - ufw; = upwi 

ep(i) = uf(diri+l - m i )  

If we subtract w" from both sides of (6) and multiply by 
up from the left, we find that the errors {ep(i),ea(i)} are 
related via: 

ep(i) = e , ( i )  - fe9(i) ( 8 )  

where we defined, for compactness, p ( i )  = 1/lluf112. Sub- 
stituting (8) into (6), we obtain the update relation 

+;+I = +i - p( i )u f* [e , ( i )  - ep(i)] +mi 

By evaluating the energies of both sides of this equation we 
obtain 

Ili+i+l - mill2 + P(i)lea(i)lz = Ili+il12 + fi(i)Iep(i)12 (9) 

To proceed, we impose the following modeling assumption: 

- A . l  Quantization errors are zero-mean, mutually independent, 
and independent of all other signals. 

This assumption is typical in the context of finite pre- 
cision analysis of adaptive algorithms and it enables the 
derivation of closed-form expressions for the steady-state 
MSE. A more sophisticated nonlinear model for treating 
quantization errors, which takes into account the quantizer 
underflow effects, has been used in [8] for the LMS algo- 
rithm; though it does not lead to closed-form expressions. 

Imposing the equality E ll+;+1112 = E lli+;112 in steady- 
state, and using (8) and A . l ,  it is straightforward to  verify 
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that the energy relation (9) leads to the following error vari- 
ance relation, in terms of e,(i) ,  

where M = E (mimf). For iid multiplication errors, Tr(M) = 
Nu:. This equation can now be solved for the steady-state 
mean-square-error (MSE): 

4. STEADY-STATE MSE OF THE QUANTIZED 
CMA 

We now apply the above results to the CMA recursion (2). 
For mathematical tractability of the analysis, we impose 
the following two reasonable assumptions in steady-state 
(i + 00) - for more motivation and explanation on these 
two assumptions, see [6 ,  91: 

A.2 The transmitted signal s(i - D )  and the estimation er- 
ror e,(i) are independent in steady-state so that E(s'(i - 
D)e,( i ) )  = 0 ,  since s( i  - D )  is assumed zero mean. 

A.3 The scaled regressor energy p211u;112 is independent of 
y q ( i )  in steady-state. 

small p and small e:, it is straightforward to show that the 
steady-state MSE can be approximated by 

CCMA(real) M 

TI-(M)/~  + p ~ ( ~ 2 ~ ; 2  - 2 ~ ; ~ ~  + 2 ~ :  + + 0;) E l ( ~ q 1 1 ~  

2 E(3s2 - E;) 

This result implies that the steady-state MSE is composed 
of two terms. The fist term decreases with p and increases 
with the multiplication error variance Tr(M). The sec- 
ond term increases with p and the received signal variance, 
E lluq112. Thus, unlike the infinite precision case (see, e.g., 
[6, 9]), the steady-state MSE is not a monotonically increas- 
ing function of p .  We can also see that in the noiseless case, 
and for non-constant modulus data {s(.)}, there exists a fi- 
nite optimal value of the step size, p o ,  that minimizes the 
above expression for the steady-state MSE, which is given 
by 

= 

,/T~(M)/ [E ( s 2 ~ ; 2  - 2 ~ ; s 4  + s 2 0 :  + 96 + 0;) E lluqly] 

where Elluq112 = Euf'uf = E l l ~ ; 1 1 ~  + Nu:. This ex- 
pression shows that p o  decreases with the signal variance, 
E I I u ~ ~ ~ ~ ,  and increases with the multiplication error vari- 
ance Tr(M). The corresponding minimum value of the 
steady-state MSE is then given by 

We consider first the case of real-valued data {s(.), y"(.), ui}. $IY(M) E ( s ~ R ; ~  - 2 ~ 3 4  + s2u; + s6 + E lluq112 

In this case, we can assume that the zero forcing response 
h~ that the adaptive equalizer attempts to achieve (cf (1)) 
can be of either form hn = f [ O ,  ..., 0,1,0, ..., 01. In the fol- 
lowing, we continue with the choice h~ = [0, ..., 0,1,0, ..., 01, 
which yields e,(i) = s( i  - D )  - yq(i) .  A similar analysis 
holds for the case h~ = [0, ..., 0, - l , O ,  ..., 01. 

Substituting (5) into-(lO), we obtain 

E (p( i ) lea( i )12)  = Tr(M) + E 

-L (yq(i) [R; - (yq(i))' + e l ( i ) ]  + ez ( i )  
P ( i )  

We shall write more compactly 

A A - .  A 
ea = e,(i), p = p ( z ) ,  y = yq(i), 

13 

for i + 00, so that (11) becomes, after expanding, 

E(3s2 - R;) 

Here we may add that for complex-valued data, the steady- 
state MSE will have a different expression than that in the 
real-valued case. Following the same derivation, and assum- 
ing signal constellations that satisfy the circularity condi- 
tion Es2(i)  = 0, in addition to the condition E(21~(i)1~ - 
Rz) > 0 (both of which hold for most constellations [7]), 
we can show that the steady-state MSE for complex-valued 
data, and for sufficiently small step-sizes, can be approxi- 
mated by 

Using this equality we can now obtain an expression for the 
steady-state MSE, E (e:) .  Replacing y by s - e,, using as- 
sumptions A.l-A.3 and neglecting 2p E (e:) ,  for sufficiently 

In this case, the optimum value of the algorithm step 
size still has the same value as in the real-valued data case, 
while the minimum achievable steady-state MSE is given by 

Finally, we may add that, for the infinite precision case 
(U: = U: = 0), the expressions for the steady-state MSE 
reduce to the expressions obtained in 161. 
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5. SIMULATION RESULTS 
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We now provide some simulation results that compare the 
experimental performance with the one predicted by the 
derived expressions. The channel considered in this sim- 
ulation is given by c = ~.1,0.3,1,-0.1,0.5,0.2].  A 4- 
tap FIR filter is used as a T-fractionally spaced quantized 
equalizer, with B, = Bd = 8,  and 9.  In this simula- 
tion, the transmitted signal was 6-PAM constellated, s ( i )  E 
{1,0.6,0.2, -0.2,  -0.6, -1) withEs6 = 0.3489, Es4  = 0.3771, 
E s 2  = 0.4667, and R2 = 0.808. The value of llu,112 is the 
norm of the received signal vector. The value of E llu, 11' was 
computed as the average over 10,000 realizations of l l ~ i 1 1 ~ .  
The value of experimental MSE was obtained as the average 
over 100 repeated runs. 

Figures 2 and 3 are plots of the experimental MSE and 
the theoretical MSE versus the step-size j i  for B, = Bd= 
8 and 9 bits, respectively. It can be seen from the figure 
that the theoretical results reasonably match the experi- 
mental results. We can also see that, for B, = Bd= 8 bits, 
the experimental MSE reaches a minimum value of -30.13 
dB, which corresponds to an optimal value of p equal to 
1.5 x lo- ' ,  while our theory predicted a minimum achiev- 
able MSE of -30.38 dB at p, = 0.94 x lo-'. For B, = Bd= 
9 bits, the experimental MSE reaches a minimum value of 
-32.11 dB, which corresponds to an optimal value of p equal 
to lo-'. On the other hand, our theory predicted a mini- 
mum achievable MSE of -33.38 dB at pLo = 0.47 x 
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Here we note that the experimental value results vali- 
date that the steady-state MSE is not a monotonically in- 
creasing function of p,  as predicted by our analytical re- 
sults. Furthermore, the experimental values of the mini- 
mum achievable MSE match reasonably well the analytical 
values. Thus, the derived results for the minimum MSE can 
be reliable in predicting the best steady-state performance, 
which the CMA can achieve for a given wordlength. How- 
ever, the experimental values for the optimum step size are 
lower than the corresponding predicted analytical values. 
This is due to quantizer underflow effects that were not 
taken into consideration in our quantization model. Thus, 
a more conservative (larger) design value for j i ,  should be 
taken into consideration to account for this effect. 
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