
TRANSIENT ANALYSIS OF ADAPTIVE FILTERS 

ALGORITHM 
LMS 
LMF 

LMF family 

TAREQ Y. AL-NAFFOURI~ AND ALI H. SAYED~ 

f [eWl 
42) 

e3(i) 
ezk++l(i) 

'Electrical Engineering Department 
Stanford University, CA 94305 

LL 

ae(i> + bei(i) 
L 

LMMN 

Sat. nonlin. J , ( i )exp (-&) dz 

Electrical Engineering Department 
University of California, Los Angeles, CA 90095 

ABSTRACT 
This paper develops a framework for the mean-square 
analysis of adaptive filters with general data and error 
nonlinearities. The approach relies on energy conserva- 
tion arguments and is carried out without restrictions 
on the probability distribution of the input sequence. 
In particular, for adaptive filters with diagonal matrix 
nonlinearities, we provide closed form expressions for 
the steady-state performance and necessary and suffi- 
cient conditions for stability. We carry out a similar 
study for long adaptive filters that employ error nonlin- 
earities relying on a weaker form of the independence as- 
sumption. We provide expressions for the steady-state 
error and bounds on the step-size for stability by ex- 
ploiting the Cramer-Rao bound of the underlying esti- 
mation process. 

1. ADAPTIVE FILTERING MODEL 

Consider noisy measurements d ( i )  = uiw"+v(i) ,  where 
WO denotes an unknown column vector that we wish 
to  estimate, uj is a row regression vector, and v(i)  is 
measurement noise. Adaptive schemes for estimating 
W O  rely on recursive updates of the general form 

I = wi + pH(ui)uTf(e( i ) ) ,  i 2 o I (1) 

where w, is the estimate of wo at  time i ,  p is the step- 
size, and 

I e(i) = d ( i )  - uiwi I (2) 

is the estimation error. The correction term in (1) is 
usually expressed in a separable form, H(ui )uTf(e( i ) ) ,  
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where f ( e ( i ) )  denotes a scalar error nonlinearity and 
W(ui) denotes a data nonlinearity and is taken as a 
diagonal matrix with nonnegative entries. In this pa- 
per, we focus on correction terms that are nonlinear in 
the data or in the error but not both. This class of al- 
gorithms is general enough to include the special cases 
listed in Table 1. Several of these algorithms were al- 
ready considered in the literature (see, e.g., [1]-[3] and 
[6] and the many references therein). The purpose of 
this article is t o  provide a framework for performing 
mean-square analysis of the general class of algorithms 
(1)-(2) in a unified manner. This is achieved by relying 
on the energy-conservation approach developed in [4]- 
[6] and by expanding it to handle both transient analysis 
and mean-square analysis. 

2. ENERGY RELATION 

Mean-square analysis of (1)-(2) is best carried out in 
terms of the normalized regressor Ui = uiH (ui) and 
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the following error quantities: 

weight-error vector 

weighted a posteriori error 

- A  wi = W O  - wi 
e,C(i) ui~.iiri weighted a priori error 

e;(i) e U ~ Z & + ~  

where X denotes a weighting matrix. We reserve special 
notation for the case X = I : e,(i) = ef(i) and ep(i) = 
e i ( i ) .  Using these error quantities, we can rewrite the 
adaptive algorithm (1)-(2) as 

.iiri+l = ~i - p $ f ( e ( i ) )  (3) 
e ( i )  = e,(i) + w(i )  (4) 

We also find it useful to use the compact notation 
llw.112 = ii~TEt3i. This notation is convenient because 
it enables us to transform operations on .iiri into oper- 
ations on the norm subscript, as demonstrated by the 
following properties. Let a1 and a2 be scalars and E& 
and E2 be symmetric matrices of size M .  Then 

‘ c  

Superposition. 

alII+iII~l + a211G:IIk2 = I I ~ i I t ~ 1 ~ l + a z ~ 2  

Polarization. 

(ui XlGi)  (ui ~ 2 ~ i  1 = IIGi IIgl ,T,,,~, 

Independence. If wi and U, are independent] 

E [ll.ii)ill~,u~uic2] = E [ll~ill&lEIUTUi]CZ] 

Notational convention. Using the vector notation] we 
A 

shall write 116ill:ecp1) = l l ~ i l \ ~ l  

With the above definitions and notation at hand, we 
proceed to premultiply both sides of (3 )  by uiH(ui)X 
to get 

U.W(U;)XG;+~ = U;H(U,)XG. - pf(e(i))uiH(ui)xii? 

Incorporating the expressions for iii, e ; ) ,  and e$), and 
solving for p f ( e ( i ) ) ,  we find that 

Combining (3) and ( 5 )  to eliminate p f ( e ( i ) ) ,  and taking 
the E-weight of the resulting expression leads to the 
energy conservation celation: 

This equality relates the weighted energies of the er- 
ror variables { i i t i , . i i r i+l ,  e?(i), eF(z)}; it is the weighted 
version of the energy relation derived in [4]-[6] and used 
there, and in other related references, to study the per- 
formance of adaptive filters from both deterministic and 
stochastic points of view. The inclusion of the weight- 
ing factor C allows us to perform both transient and 
steady-state analyses. Observe that no assumptions or 
approximations were used to derive (6). This relation 
will be the starting point for much of the subsequent 
discussion. 

3. THE DATA NONLINEARITY CASE 

In this section, we assume f ( e ( i ) )  = e ( i )  and proceed 
to study the mean-square performance of the resulting 
algorithm. For this purpose, we rely on the following 
independence assumptions: 

AN The noise v ( i )  is i.i.d. and independent of the input. 

AI The sequence of regressors {ui} is independent with 

Thus note first that (5) becomes 

zero mean and autocorrelation matrix R. 

e,~’(i) = e,H’(i) - ,ue(i)ll~iIl~ 

Substituting this expression for eF’(i) into the energy 
relation (6),  we get 

lI-iiri+tll$ = I I ~ ~ I I &  - 2 p e f C ( i ) e ( i )  + p211Eii11+2(i) (7) 

By further incorporating (4) and assumption AN, (7) 
reads under expectation 

E [IIG~+~II$I = E [ I I C ~ I I ~ I  - [eZC(i)ea(i)] 

+$E [ ~ ~ ( ~ ) I I u ~ I I $ ]  + /1’d~ [IFLII~] (8) 

Using the, weighted-norm properties, we can rewrite the 
estimation error expectations in (8) as some weighted 
norms of .iii : 

Substituting (9)-(10) into (8) and using assumption 
yields 

AI 
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where a time index (i + 1) has been attached to IC, and 
where {Xi, ICi+l) are related via 

xi = xi+-l- P x ; + ~ E  [ii~ui] - P E  [u~iii] E;+X 

+ P Z ~ ~ l l ~ i l l ~ i + l U T U i l  (12) 

Relations (11)-(12) (or, equivalently, (14)-(15) be- 
low) are the equivalent representations of the energy 
relation (6) under assumptions AN and AI. They can 
be used to  derive conditions for mean-square stability, 
as well as expressions for the steady-state mean-square 
error and mean-square deviation of an adaptive filter. 
To see this, we start by noting that the recursion for Xi 
can be rewritten more compactly, using the vec opera- 
tion and the Kronecker product notation, as 

By inspecting (15), it becomes clear that the re- 
cursion is stable if, and only if, the matrix F is sta- 
ble. Thus let A = I@E[uiiii] + E[uiiii]@I and 
B = E [uiai@uiii;]. Then, from (14), F = I -pA+p2B 
and F will be stable if, and only if, 

which provides the desired condition for mean-square 
stability. 

Now assuming the filter is stable, we have 

Thus, in the limit, and using the change of variables 
U’ = ( I  - F ) a ,  relation (15) takes the form 

This expression allows us to  evaluate the steady-state 
weight-error energy for any weight U’. In particular, 
we can get the mean-square error by choosing U‘ = 
vec (R)  , and the mean-square deviation by choosing 
U’ = vec ( I )  , i.e., 

4. THE ERROR NONLINEARITY CASE 

In this case, W(ui) = I .  However, the analysis is more 
demanding and we shall assume that the filter is long 
enough for the following assumptions to be reasonable: 

AG e,(i) is Gaussian. 

AU llui11’ and f2(e(i)) are uncorrelated. 

For long adaptive filters, the first assumption is justified 
by central-limit theorem arguments while the latter is 
a weaker version of the independence assumption (it 
becomes more accurate as the filter gets longer). 

= H(ui) = 
I .  By eliminating ep(i) from both equations, we get a 
recursion similar to  (7) for the nonlinear error case: 

Thus consider relations (5) and (6) for 

II*i+iI12 = II*ij12 - 2pf(e(i))e,(i) + p211uiI12f2(e(i)) 

Upon taking the expectations of both sides, 

E [ I I *~+~I I~ ]  = E [II*~v] - 2p~[f(e( i ) )e , ( i ) l  

+P2E [Iluil12f2(e(9)] 

we see that two expectations call for evaluation. 
e,(i) is Gaussian, we have by Price theorem, 

E [f(e(i))ea(i)l = E [e311 E[f’(e(i))l 

= E [ e m ]  ( E  [e3i>]> 

for some function h(.). By assumption AU, we can also 
write 

= (RI Q ( E  [e3i>I> (19) 

for some function q(,). Notice that in (18) and (19), 
E[f’(e(i))] and E[f2(e(i))] depend on e,(i) through the 
second moment E [ez(i)] only, since e,(i) is Gaussian 
and independent of the noise. Table 2 lists the expres- 
sions for the functions h(.) and q(.) for the error non- 
linearities of Table 1. 
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Table 2: h(- )  and q( - )  for the error nonlinearities of 
Table 1 and for Gaussian nohe ((rz e E[ez(i)]) 

To determine the steady-state performance of the 
algorithms, we note that in steady-state, E [Il&+l(12] = 
E [ ~ ~ 6 , ~ ~ 2 ]  as i -+ CO. Let S = limi-,m E [e:(i)]. Then 
(17) leads to 

This expression shows that the meanlsquare error, S, is 
a fixed point of the function fTr (R)  H. For a given 
error nonlinearity, we can therefore determine S by first 
determining h and q and then solving for S.  

To study stability, we consider recursion (17) again 
and note that if p is chosen to  satisfy for all i: 

then E [\\ik+l\\2] 5 E [I\Gi\l2], i.e., the mean-square de- 
viation will be a decreasing and hence convergent se- 
quence. Now by Cauchy-Schwartz inequality, we have 

for some function p ( . ) .  Hence, a more conservative con- 
dition on p for stability is 

Minimizing (21) over E[ez(i)] can be demanding. In- 
stead, we know that E[e:(i)] is lower-bounded by the 
Cramer-Rao bound 7 of the underlying estimation pro- 
cess. To obtain an upper bound, we note that if p is 
chosen t o  satisfy (21), then 

2 E [IIG~II ] I E [11wi-111~1 I . * .  I E [ I I ~ ~ I I ~ I  

Therefore, since e,(i) is Gaussian, we have 
1 1 E [ea(i)’] = - [ ~ l e ~ ( i ) l ] ~  = - E  [ l u i ~ i l ] ~  

1 4 l 4  5 ;E [ l l ~ i 1 ( ~ ] ~ / ~  E [ I ( G O ~ ~ ( ~ ] ~ / ~  5 ;[% (R)]1’2E [ J ( w o ( \ ~ ] ~ / ~  

This prompts us to  define the feasibility set 

} R = a : y 5 a 5 ; [TI-(R)J’/~E 1 { [ J / W O ) J ~ ] ~ / ~  

By carrying out the minimization in (21) over the set 
R, we get the following condition for stability 

(22) 

By reviewing the above stability argument, we see that 
only the Gaussian assumption AG was used. Explicit 
bounds on p can be obtained by evaluating h and p and 
carrying out the minimization in (22). 

5. CONCLUSION 

In this paper, we presented a unified approach for the 
transient analysis of adaptive filters. Among other re- 
sults, we provided conditions for stability and expres- 
sions for the steady-state error. 
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