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ABSTRACT 

The existing derivations of fast RLS adaptive filters are dependent 
on the shift structure in the input regression vectors. This structure 
arises when a tapped-delay line (FIR) filter is used as a model- 
ing filter. In this paper, we show, unlike what original derivations 
may suggest, that fast fixed-order RLS adaptive algorithms are not 
limited to FIR filter structures. We show that fast recursions in 
both explicit and array forms exist for more general data struc- 
tures, such as orthononnally-based models. One of the benefits of 
working with an orthonormal basis is that fewer parameters can be 
used to model long impulse responses. 

1. INTRODUCTION 

Fast RLS adaptive filtering algorithms represent an attrac- 
tive way to compute the least squares solution of grow- 
ing length data efficiently, in O ( M )  computations per sam- 
ple, where M is the filter order. The low complexity that 
is achieved by these algorithms is a direct consequence of 
the shift structure that is characteristic of regression vec- 
tors in FIR adaptive implementations. Recently, the authors 
showed that the input data structure that arises from more 
general networks, such as Laguerre filters, can be exploited 
to derive fast order-recursive [ 11 and fixed-order filters [2,3] 
as well. 

In this paper, we show that fast fixed-order RLS adap- 
tive algorithms can also be derived for general orthonormal 
bases (see e.g., [4, 51) in both explicit and array forms. 

2. THE EXTENDED FAST TRANSVERSAL FILTER 

Given a column vector YN E CNtl and a data matrix HN E 
dN+') M ,  the exponentially-weighted least squares prob- 
lem seeks the column vector w E CM that solves 
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The matrix II is a positive-definite regularization matrix, 
and W = ( A N  @ A N - 1  @ -.  . @ 1). The symbol * denotes 
complex conjugate transposition. The individual entries of 
YN will be denoted by {d ( i ) } ,  and the individual rows of the 
matrix HN will be denoted by {u i } .  The RLS algorithm 
computes the optimal solution of problem (1) recursively as 
follows: 

wN+1 = WN + gN+l(d(N + 1) - u N + l ' W N ]  (2) 
QN+1 = X-lPNUk+lr(N + 1) (3) 

y l ( N  + 1) = 1 + x-lUN+lPNuh+I (4) 
p N + t  = X-lPN - gN+lr-'(N + l)g&+1 (5) 

with 20-1 = 0 and P - 1  = rI. When the regression vec- 
tors possess shift structure, it is well known that these recur- 
sions can be replaced by more efficient ones. Now, consider 
the generalized orthonormal network of Fig. 1 with trarisfer 
hnction (the case of equal poles, which corresponds to a 
Laguerre network, is treated in [2]): 

with coefficients (wk). 

Fig. 1. Transvenal orthonormal structure for adaptivefiltering. 

The input to the orthonormal network at time N is denoted 
by s ( N ) .  Using (6) we can relate two successive regression 
vectors U N  and u N + 1  as 

UM+l ,N  = [U(N f 1,o) U N ]  = [UN+1  u ( N ,  M - I)]@ 
= i i ~ + i , ~ + i + ,  (7) 
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2.1. Forward Estimation Problem 

Consider the input data matrix HM,N and define the coeffi- 
cient matrix (note that we are now indicating explicitly the 
column dimension of H N ,  since we will be dealing with 
order-recursive relations): 

PGt, = (XNfln-1 M + . H G , N W N H M , N ) .  

Now suppose that one more column is appended to H M , N  
from the left, i.e., 

H M + ~ , N  = [ Z O , N  H M , N  3 (9) 

- (XN+'l-I--l M + 1 +  H L + ~ , N W N H M + ~ , N )  
and let 

pG: l ,N  - 

where rI&l+l = ( p  @ a;'). Then it is easy to verify that 

P M + ~ , N  = 

(10) 
where WL,, is the solution to the least-squares problem 

min [ ~ x ~ + ~ I I ~ - I G ~ ' ~ ~ L I I ~  + IIW, 1 / 2  ( 2 0 , N  - HM,N~L)II~] 
f 

W M  

whose minimum cost we denote by < k ( N ) .  It holds that 
& ( N )  = pXN+l + & ( N ) .  Now, the following equations 
constitute the update of the quantities of this problem: 

(1 1) wL,N = .I$,,-, + ~ M , N  f~ 

A where k M , N  = g ~ , ~ - y ; '  ( N )  is the normalized gain vector, 
LYM ( N )  and f M ( N )  are the a priori and a posteriori for- 
ward prediction errors, related via f~ ( N )  = CYM ( N ) - ~ M  ( N ) .  
Note that no information on the data structure is needed in 
order to derive these equations (see [ 11). 

2.2. Backward Estimation Problem 

Similarly to the forward estimation problem, assume that 
one more column is appended to HA.I,N from the right, i.e., 

and define the corresponding coefficient matrix as 
p-1 M + ~ , N  = (AN+'fik;1 f B&+l,NWNR&f+l,N) 

where 

for some constant vector c and scalar 6 to be specified. In- 
verting both sides, we obtain: 

(17) 

This equation has two main differences with respect to the 
definition of the variables U$,, and < L ( N ) ,  for the for- 
ward prediction problem. The vector QN is the sum of two 
quantities, 

(18) 

where 
QN = wh,N + t N  

t N  = X N f l P & f , N C .  (19) 

The first term of (18) is the solution to the least-squares 
problem: 

min [ X N + 1 1 1 ~ ~ 1 ' 2 w ~ l l z  + I ~ w ~ ' ~ ( Z M , N  - H M , N & ) l l z ]  

where < k ( N )  is the corresponding minimum cost. Substi- 
tuting Eq. (5) into (19), we obtain a recursive relation for 
t N  (which is analogous to the time-update for w $ , ~ ) ,  and 
it further implies the following time-update for q N :  

qiv = qiv-i + ~ M ( N ) ~ M , N  

4 

where ~ M ( N )  = E M ( N ) T M ( N ) ,  and 

E M ( N )  = P M ( N )  - U M , N ~ N - I  . 
In addition, the quantity C$ ( N )  is defined by 

& ( N )  & ( N )  + XN+l(6 - C'tN - C*w&,N - w$,Nc) . 

Although the update of these terms may look complicated, 
using the time-update for wk,,, and t N ,  we obtain after 
some manipulations 

& ( N )  = X&(N - 1) + E%(N)7]M(N) .  (20) 

Also, multiplying (17) from the right by ii>+l,N+l, we ob- 
tain, similar to the forward estimation problem, 
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where V M ( N )  = EM(N)/X&(N-~). The quantity V M ( N )  
is referred to as the rescue-variable and can be directly ob- 
tained as the last entry of I C M + ~ , N  (to be computed further 
ahead). 

Proceeding similarly to the derivation of (14), we obtain 

7 M ( N )  = 7M+l(N)[1- 7 M + l ( N ) & M ( N ) V M ( N ) ] - l  . 

Note that the variables E M ( N )  and ~ M ( N )  play roles 
similar to the a priori and a posteriori backward prediction 
problems. However, although all the quantities related to 
the backward prediction problems satisfy identical recursive 
equations, here they have different interpretations. 

2.3. Exploiting Data Structure 

We still need to evaluate L M , N .  For this purpose, we need to 
identify the variable that is affected by the input data struc- 
ture. Thus, consider any invertible matrix @ such as in (8). 
From Eq. (7), it follows that 

where H M + ~ , N  and H M + ~ , N + ~  are the corresponding aug- 
mented input data matrices. We then get 

h + i , N + i  = ( ~ ~ + ~ f i ~ ? + ~  + ~ ~ + 1 , N + 1 ~ N + i ~ M + i , N + i ) - '  

= ( ~ ~ + ~ i i ~ ; ,  + @ - * H ~ + ~ , N w N H M + ~ , N @ - ' ) - ~  

Note that if we could choose 

we obtain a simpler relation between ( & + I , N + ~ ,  PM+I,N}: 

LPM+l ,N+l  = @ p M + l , N @ *  (23) 

In order for this relation to hold, we need to show how 
to choose IIM, c, and 6 in order to satisfy (22). Substituting 
(16) into (22), we get 

Now, the matrix cli-* can be defined block-wise as 

@-*=V O m  I 
where 

m = [ O  0 0 0 1 1  and 

Ta 

Initialization 

p is a small positive number; n is the solution to (25);  
c is given by (26). 
CL(4 = P / A  
& ( O )  = X-'[rI-1]M-l,M-l - c" 

40 = n-'c 

f WM,O = w M , - 1  = 0 

mal bases. 

Expanding (24), we find that 

AnL1 - Tl-I&IT* = p a *  . (25)  

Hence, if lakl < 6, this Lyapunov equation admits a 
unique positive definite solution IIM. This is because all the 
eigenvalues of 7 are either a; or 0, and the pair (X-'l2T, a) 
is controllable. From (24), we then obtain 

c = ~ - ' ~ ~ G ' m *  (26) 
6 = X-'mn>lm* = X - ' [ I I ~ ~ ] M - ~ , M - ~  . 

From (23), we can now obtain similar relations between 
( g M f l , N , j M + i , N + l )  and (YM+I(N),TM+I(N + I)}, and it 
is straightforward to show that 

7 M + l ( N  + 1) = Y M + l ( N )  
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This relation shows that the time update of the gain vec- 
tor k M , N ,  which is necessary to update the optimal solution 

W M , N + l  = W M , N  + k M , N + l e h f ( N  + 1) 
can be efficiently performed in three main steps: (1) Or- 
der update k M , N  -+ k M + l , N ;  (2) Time-update k M + l , N  + 
i i M + i , N + i ;  ( 3 )  Order downdate K M + i , N + i  -+ k M , N + l  [i.e, 
Eq. (12), (27) and (21)]. Table 1 shows the resulting gener- 
alized FTF algorithm. 

Note that when a k  = 0, we have @ = I and therefore 
~ M + ~ , N + ~  = k M + 1 , N ,  in which case the recursions col- 
lapse to the FTF algorithm [6]. Equation (27) is the only 
recursion that uses the fact that the input data has structure. 
For the orthonormal basis considered here, this multiplica- 
tion is essentially a convolution, and can be performed with 
O ( M )  operations. The cost of the usual FIR FTF algorithm 
is known to be U ( 7 M )  operations [6]. The overall cost for 
our extended filter is U ( 8 M )  operations. 

3. THE EXTENDED FAST ARRAY ALGORITHM 

such that this difference has a rank 1 matrix factorization of 
the form 

x-’n - TIIT’ = hh’ . (30) 

Again, from the properties of Lyapunov equations, we know 
that this equation admits a unique Hermitian solution, since 
all the eigenvalues of T are equal to a; or 0. Moreover, 
since I d a k  I < 1, any vector h such that the pair (X1/2T, h) 
is controllable, will result in a positive-definite solution n. 

Hence, we can choose a vector h (and consequently, U) 
such that the difference X-’U - TIIT* has rank one (and 
inertia 1). It then follows that the rank of V{p,,+) in (29) 
will be 3 and J = (1 @ - 1 @ 1).  For either choice of H, the 
resulting fast array algorithm can be summarized as follows. 

(Fast Array Algorithm) Consider input regression vectors 
arising jiom the orthonormal structure of Figure I .  The 
solution to the minimization problem (1) can be recursively 
computed as follows. Start with w-1 = 0, Y - ~ / ~ ( O )  = 1, 
IC0 = 0, LO and J k o m  the factorization (28) at time 0, and 
repeat for each N 2 0, 

- 
. k [ u N + 1  - 1 ) ] L N  1 

Using the expressions for { P M + ~ , N ,  PM+I,N+I}) in (10) 
and (17) (and ignoring the order index M ) ,  the FTF al- 
gorithm can be further motivated in a different manner by 
noticing that its recursions perform at each iteration the low 
rank factorization V{p,,*) = 

where J is an r x T signature matrix and 

More generally, it can be shown (see, e.g. [7, 31) that by 
forcing the initial difference to have low rank, and a certain 
inertia, we end up forcing all the successive differences to 
have a similar property. This fact is the basis for the exis- 
tence of a fast recursion that does not necessarily propagate 
the difference V { p M , , , , ~ )  explicitly. That is, we need to 
h d  a matrix PO = II such that the difference V{n,+) has 
low rank. Expanding this difference, we obtain 

A - l I I  - TIIT’ -TIIu’ 
v{pO*O) = [ -ffnT* -ffrIff* 

where [T]ij = [ T ] ~ - l - j , ~ - 1 4  and v = f i T .  The matrix 
11 that results from solving (25),  under the condition (uk I < 
A, leads to a rank 2 difference with J = (1 @ - 1). 

Alternatively, we can find another II that leads to a rank 
3 difference and requires instead the condition l f i a k [  < 
1. Thus consider the matrix difference X - l I I  - TIIT” in 
Eq. (29). We proceed to find a positive definite matrix H 

where O N  is a (1 @ J)-unitaly matrix thatproduces the zero 
entries in the above post-array, and L N  is ( M  + 1) x T .  

The prvduct with the matrix @ defined in Eq. (8) can be 
implemented fast by convolution. Moreover; 

w N + 1  = W N  + g N + l [ d ( N  + 1) - U N f l W N ] .  

4. REFERENCES 

R. Merched and A. H. Sayed, “Order-recursive RLS La- 
guerre adaptive filtering,” IEEE Transactions on Signal Pro- 
cessing, vol. 48, no. 11, pp. 3000-3010, Nov. 2000. 
R. Merched and A. H. Sayed, “Extended fast fixed-order 
IUS adaptive filters,” Proc. ISCAS, Sydney, Australia, May 
2001. 
R. Merched and A. H. Sayed, “Fast RLS Laguerre adaptive 
filtering,” Proc. Allerton Conference, IL, Sep. 1999. 
B. Ninness and F. Gustafsson, “A unifying construction of or- 
thonormal bases for system identification,” IEEE Trans, Au- 
tomat. Control., vol. 42, pp. 515-521, Apr. 1997. 
J. W. Davidson and D. D. Falconer, “Reduced complexity 
echo cancellation using orthonormal functions,” IEEE Trans. 
on Circuits Syst., vol. 38, no. 1, pp. 20-28, Jan. 1991. 
J. Cioffi and T. Kailath, “Fast recursive-least-squares 
transversal filters for adaptive filtering,” IEEE Trans. on 
Acoust., Speech Signal Processing, vol. ASSP-32, pp. 304- 
337, April 1984. 
A. H. Sayed and T. Kailath, “Extended Chandrasekhar recur- 
sions,” IEEE Trans. on Automatic Control, vol. AC-39, no. 3, 
pp. 619-623, March 1994. 

3792 


