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ABSTRACT 
This paper solves the problem of designing exact RLS lattice (or 
order-recursive) algorithms for adaptive filters that do not involve 
tapped-delay-line structures. As a special case, an exact RLS La- 
guerre lattice filter is obtained. 

1. INTRODUCTION 

As is well-known, all the derivations that are available so far in 
the literature for exact RLS order-recursive filters are intrinsically 
based on the assumption of regression vectors with shift structure 
(see, e.g., [l]-[3] and the references therein). The resulting filters 
are therefore not applicable to situations that involve other filter 
structures, such as Laguerre-based networks, where successive re- 
gression vectors are not shifted versions of each other. 

We resolve this issue in this paper and develop a framework 
for RLS adaptive lattice filtering that applies to more general data 
structures. One consequence of our derivation will be the first ex- 
aci RLS Laguerre-based lattice filter. This is in contrast, for ex- 
ample, to the gradient adaptive laguerre-lattice (GALL) filter de- 
veloped in [4]. Both the GALL solution and the RLS solution are 
O ( M )  algorithms. One advantage of an RLS-based algorithm is 
that least-squares methods offer significant improvement in con- 
vergence performance. This is in addition to other advantages of- 
fered by Laguerre networks such as superior modeling capabilities 
to FIR networks, at a reduced number of taps and with a guaran- 
teed stable performance (see [4,5, 61). 

While some of our expressions may look familiar to readers 
acquainted with the theory of least-squares lattice filters, our pre- 
sentation actually has three contributions that are essential to the 
extension to more general data structures: 

I .  First, all expressions are derived without assuming any un- 
derlying structure in the regression vectors. The general 
consensus in the literature so far has been that some (or 
most) of the relations derived in Sec. 3 are valid only for 
shift structured data. 

2. Second, the derivation shows that it is possible to derive 
eficient order-recursive RLS filters even for cases where 
the regression vectors do not possess shift structure. This 
is achieved by pointing out the exact variable whose update 
is intimately affected by the data structure. The derivation 
also shows what kind of data structures lead to fast order- 
recursive filters. 
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3. Third, all order-recursive relations are derived by explic- 
itly solving regularized least-squares problems. In contrast, 
similar relations have always been derived in the literature 
without taking into account the need for regularization; this 
need is usually accounted for by initializing lattice algo- 
rithms with certain small initial conditions without proper 
justification. Our arguments resolve this inconsistency. 

2. REGULARIZED LEAST-SQUARES 

We first provide a brief review of the regularized least-squares 
problem. Thus given a column vector y E C N + l  and a data matrix 
H E @ ( N + l ) X  M ,  the exponentially-weighted least-squares prob- 
lem seeks the column vector w E C M  that solves 

min [pXN+'(Iw(12 + (y - Hw)*W(y - H w ) ]  , ( 1 )  

where p is a scalar positive regularization parameter (usually small), 
and W = ( A N  @ AN-' @ . . . @ 1) is a weighting matrix that is 
defined in terms of a forgetting factor X satisfying 0 << X < 1. 
The symbol * denotes complex conjugate transposition. 

The individual entries of y will be denoted by { d ( i ) } ,  and the 
individual rows of H will be denoted by {Q}. Let W N  denote the 
optimal solution of (1). It is given by 

W N  = ( ~ x ~ + ' I  + H * w H ) - ' H * w ~  e P N H ' W ~ ,  

We further let $denote the vector $2 H W N .  We shall refer to $as 
the regularized projection (or simply projection) of the observation 
vector y onto the range space of H ,  R ( H ) .  We also define the a 
posteriori and a priori error vectors, eN = y - HWN and E N  = 
y - H W N - ~ .  Let J ( N )  denote the minimum cost of ( I ) .  Then 

The last entries of e N  and E N  are the a posteriori and a priori 
estimation errors at time N and they are given by e ( N )  = d ( N )  - 
U N W N  and E ( N )  = d ( N )  - U N W N - 1 .  They are both related by 
a conversion factor, e ( N )  = y ( N ) e ( N ) ,  where y(N) = 1 - 
UNPNU;V. 

((N) = y*Werv. 

3. ORDER-RECURSIVE RELATIONS 

We now derive several order-recursive relations. Before proceed- 
ing, we should remark that since in the remainder of this paper 
we deal primarily with order-recursive least-squares problems, it  
becomes important to explicitly indicate the size of all quantities 
involved (in addition to a time index). For example, we shall write 
W M , N  instead of W N  to indicate that i t  is a vector of order M that 
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is computed by using data up to time N .  We shall also write HM,N 
instead of H ,  Y N  instead of y, WN instead of W ,  and PM,N in- 
stead of P N .  In a similar vein, we shall write ~ M , N ,  e M , N ,  E M , N ,  

e M ( N ) ,  E M ( N ) ,  YM(N),  t M ( N ) .  

3.1. Order-Updating 

Assume for simplicity of presentation that M = 3. Consider 
the (regularized) projection of Y N  onto R ( H 3 , N ) ,  viz., &,N = 
H ~ , N P ~ , N H ; , N W N Y N .  Now suppose that one more column is 
appended to H ~ , N ,  

H 3 , N  = [ H 3 , N  2 3 . N  ] 7 (2) 

where 2 3 , N  = col{u(O,3), . . . ,u (N,3)} .  The projection of Y N  

relate both projections of Y N  by noting that 
Onto R ( H ~ , N )  iS now c 4 , N  = H ~ , N P ~ , N H ~ , N W N Y N .  w e  Can 

P 4 , N  = (3) 

where U I ~ , ~  is the solution to the least-squares problem: 

and &(N) is the corresponding minimum cost. This problem 

denote the resulting (backward) estimation error vector. Substitut- 
ing (3) into the expression for G4,N and subtracting YN from both 
sides of the resulting equation we get 

projects 2 3 . N  Onto R ( H 3 , N ) .  Let b3 ,N  = 2 3 , N  - H 3 , N w i , N  

where we defined the scalar coefficient 

The recursion (4) for e 4 , ~  depends on b . ~ .  We are thus motivated 
to study the propagation of b , ~  more closely. 

3.2. Backward Estimation Problem 

We Start by partitioning H ~ , N  as H ~ , N  = [ Z O , N  BT,N 3 . us- 
ing arguments similar to those that led to (4), i t  is straightforward 
to verify that 

I b 3 , N  = b2 ,N  - 4 ( N ) f 2 , N  1 
where the scalar coefficient &(N) is defined as 

and f 2 , N  is the residual error that results from solving 

whose minimum cost we denote by &N). This problem projects 
2 0 , ~  onto z ( B 2 , ~ ) .  Likewise, b2,N is the residual error that re- 
sults from solving 

whose minimu_m cost we denote by &(N). This problem projects 
2 3 , N  onto R ( H z , N ) .  

3.3. Forward Estimation Problem 

By similar arguments, f 2 , ~  can be updated as follows: 

where &(N) is defined as 

Note that we used &(N) in the numerator of rci(N) and &(N) in 
the numerator of K ~ ( N )  in (6) ,  since i t  can be easily verified that 
[ f ; , N  W N Z 3 , N ] *  = b ; , N  W N X O , N .  

Summarizing, we have so far derived the following order-update 
relations for the last entries of the error vectors { e M , N ,  b M , N ,  ~ M , N }  

(written here for a generic order M ) :  

e M + l ( N )  = ~ M ( N )  - K M ( N ) ~ M ( N )  
b M + l ( N )  = b M ( N )  - ICL(N)fM(N) { f M + l ( N )  = fMM(N) - & ( N ) B M ( N )  

We still need to derive a relation for ~ , u , N .  We postpone this dis- 
cussion to Sec. 4.1 due to its intrinsic dependence on data structure. 

We now show how to update the quantities & ( N ) ,  P M ( N ) ,  
E&(N),  &(N), and &(N), which are needed in the evaluation 
of the (reflection) coefficients K M ( N ) ,  .h(N), and & L ( N ) .  To 
do so, we first derive below a general update result. 

3.4. A General Time-Update Result 

Consider a generic data matrix of the form [ z I? t ] where 
x and z are column vectors, and H is a matrix of appropriate di- 
mensions. Define the weighted inner product A = x* WZ, where 
2 is the residual vector from a regularized projection of z onto 
R(f i ) ,  namely Z = z - fiw,,  where wr is obtained by solving 

min [pAN+lllwJIZ + ( z  - B w ) * W ( z  - aw)] (8) 

where, as before, W = diag{XN,. . . , A ,  1). 

say 
Now assume that one more row is appended to the data matrix, 

and introduce the corresponding factor A1 = x ; W l Z 1 ,  where 
W 1  = (XW @ 1). We would like to relate A1 and A. 

Let wz, denote the solution of _a problem similar to (8) with 
{ z ,  B, W ,  AN+'} replaced by (21, H I ,  W l ,  AN+' } .  Likewise, let 
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wxl denote the solution of (8) with { z , A ,  W, AN+'}  replaced by 
(21, A I ,  Wl,  AN+'}.  Now define the a posteriori errors 15 = a - 
hw,, and = p - hwzl,  as well as the conversion factor 

y = 1 - h + I;r;wlI;rl] - l  h* e 1 - hP1h' 

From the definition of A1 we can show that 

b M ( N )  = 4 N b M , N  + = ~ N ~ M , N  

I I 

(18) 

3.5. Time-Update Relations 

We can now use the general result (9) to derive the following time- 
updates: 

6 M ( N )  = X 6 M ( N  - 1) + f & ( N ) i M ( N ) / Y M ( N )  (10) 
~ M ( N )  = ~ M ( N  - 1) + eL(N)&M(N)/yM(N) (11) 

&(N) = XJL(N - 1) + l b M ( N ) 1 ' / ; y M ( N )  (12) 

SLP) = X L ( N  - 1) + lfM("M(~) (13) 

= XL(N - 1) + IbM(N)I ' /YM(N)  (14) 

where the conversion factors { T M ( N ) ,  ~M(N)} satisfy the order- 
updates: 

So far we have derived almost all the necessary recursions for 
the development of an adaptive lattice filter. All the results hold 
for arbitrary data structures. The only update missing is the one 
for the error sequence { b h . ~ ( N ) } .  I t  is the update of these vari- 
ables that is directly affected by data structure and it is the key 
to achieving a fast algorithm (by fast we mean O ( M )  operations 
per iteration for a filter of order M). For example, in the case 
of prewindowed input data with shift-structure i t  is easy to con- 
clude that ~ M ( N )  = b M ( N  - l), E k ( N )  = [h(N - l), and 
?M(N) = ym(N - 1). These equalities eliminate the need for 
recursions (1  2) and (1 6) and the general lattice recursions collapse 
to the well-known tapped-delay-line lattice network. 

Now, what if two successive columns of the input data matrix 
HM,N are not shifted versions of each other? Would it  still be 
possible to derive a fast lattice algorithm? Interesting enough, the 
answer is positive for generalized data structures. We demonstrate 
this fact in the next section by considering an important example. 

4. RLS LAGUERRE ADAPTIVE FILTERING 

We assume X = 1 in this section. Thus consider the Laguerre- 
based model of Figure 1 where 

2-l  - a  
and L ( z )  = ___ 0 < la( < 1, d i = 7  Lo(z )  = ___ 

1 - az-1 1 - az-1 ' 
(17) 

with prewindowed input data (i.e., s( i> = 0 for z 5 0 and zero 
initial conditions). 

A-.-&. . . 
Figure 1 : A transversal Laguerre structure for adaptive filtering. 

Using the difference equations that define ( b ( z ) ,  L ( z ) } ,  it is 
possible to relate two successive columns of the data matrix HM,N 
as Z ~ + I , N  = @ N Z ~ , N ,  where @N is an (N + 1) x (N + 1) lower 
triangularToeplitzmatrix whose first column is { - a ,  l-a',a(l- 
a'), . . . , aN- ' ( l  - a')}.  Of course, i t  also holds that H M , N  = 
@ N H M . N .  

where we defined 

Hence, all we really need to know is how to update the quantity 
E M  (N) and the inner products TM ( N )  and $M ( N ) .  Due to space 
limitations, we simply mention that the following recursions can 
be established: 

EM+I(N) = EM(N)  - K h ( N ) b M ( N )  

where we defined 
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The recursion for T M ( N )  can be derived by extending the general 
result for the time-update of A in Sec. 3.4. 

Figure 2 illustrates the structure of the RLS-Laguerre Lattice 
algorithm, which is listed in Table I .  We may note that we have re- 
defined certain variables in order to save addition operations. For 
example, we defined ?& (N) = p + [h (N). Then $,, (N) sat- 
isfies a similar recursion to that of [$(N) and it  should be ini- 
tialized with the value p at time -1. Likewise, we introduced 

{FL(~)&f(N)l. 

Figure 2: RLS-Laguerre lattice network. 

5. CONCLUSIONS 

Comparing Fig. 2 with the conventional lattice structure, we see 
that the new lattice filter is still fundamentally simple; the major 
modification is in the substitution of the delay blocks by a sec- 
ond lattice filter that runs in parallel. This in effect corresponds to 
replacing the delay blocks by simple time-variant lattice sections. 
We may remark that several simulations have been carried out to 
validate the algorithm. Lack of space forbids including these re- 
sults here. The approach of this paper can be extended to other 
filter networks, other than the Laguerre structure, especially when 
differences of the form W - @*W@ have low rank. In addition, 
normalized versions, array versions, and lattice schemes with feed- 
back can also be developed. These extensions will be pursued else- 
where (see also [7]). 
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Initialization: 

For M = 0 to M - 1 set: 

p is a small positive number. 
dM(- l )  = p M ( - l )  = TE(-1) = 0 
-f -b -b 
M - 1 )  = LA-1) = 5 M ( - 1 )  = P 

For N 2 0, repear: 

u ( N )  = au(N - 1) + d T = 2 s ( N )  

yo(N) = 1 
FyO(N) = 1 #o(N) = u ( N )  Eo(N) = Jn- 
$o(N) = 1 

eo(N) = d ( N )  

bo(N) = u ( N )  

Table I :  The O ( M )  RLS-Laguerre lattice filter. 

459 


