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ABSTRACT 

This paper derives new tracking results for adaptive filtering 
algorithms operating in the presence of two sources of non- 
stationarities: a carrier frequency offset and random varia- 
t.ions. Both impairments are common in digital communi- 
cations due t,o variations in channel characteristics and to 
mismatches between transmitter and receiver carrier gener- 
ators. 

1. INTRODUCTION 

Cyclic system nonstationarities arise in communication sys- 
tems due t.o mismat.ches between the t,ransmitt.er and re- 
ceiver carrier generators. The ability of adaptive fikering 
algorit.hms t,o track such system variations are not fully un- 
derstood. A recent contribut,ion in this regard is the work 
111, which performed a first-order analysis of the perfor- 
mance of the LMS algorithm in t,he presence of a carrier 
frequency offset. 

In this paper, we develop a general framework for the 
tmcking analysis of adaptive algorithms that can handle 
b0t.h cyclic as well as random system nonst,ationarities si- 
multaneously. The framework is based on a fundamental 
variance (conservation) relation and it. allows us to derive 
several new t,racking resuks, as well as optimum design 
parameters, for several adaptive filtering algorithms (e.g., 
LMS, NLMS, LMF, LMMN, and Sign algorithms). In so do- 
ing, we also obt.ain expressions for the excess mean-square 
error in steady-state for all these algorithms. 

1.1. The Model 

Consider noisy measurements { d ( i ) }  t,hat arise from a model 
of the form 

(1) 
U 3Rz d ( i )  = u,w,e + v( i )  , 

where v ( i )  accounts for measurement noise and modeling er- 
rors, ut  denotes a nonzero row input (regressor) vector, and 
w," is an unknown column vector that we wish to track. The 
rnultiplicative term e30z accounts for a possible frequency 
offset between the transmitter and receiver carriers in a 
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digital communications scenario. Furthermore, we assume 
that the unknown system vector wy is randomly changing 
according to 

(2) w: = W O  + qi,  

where W O  is a fixed vector, and where qi is assumed t,o 
be a zero-mean stationary random vector process with a 
positive-definite covariance matrix Q. I t  is also statistically 
independent of the sequences { v ( i ) )  and {ui}. 

We thus see that the generalized system model, given 
by (1) and (2), includes the effects of both cyclic and ran- 
dom system nonstationarities; both of which are common 
impairments in communications systems and especially in 
applications that involve channel estimation, channel equal- 
ization, and inter-symbol-interference cancellation. 

1.2. Algorithms 

The main purpose of this paper is to  study the ability of 
adaptive filtering algorithms to estimate and track such 
cyclic and random variations in wg. We consider general 
adaptive schemes of the form 

Wi+l = wi + p u ;  f e ( i )  1 (3) 

where wi is an estimate for wp at iteration i ,  p is the step- 
size, and f e ( i )  denotes a generic scalar function of the so- 
called output. estimation error, defined by 

e ( i )  = d ( i )  - uzwz 

Different choices for f e ( i )  result in different adaptive a lgu  
rithms. Table 1 defines f e ( i )  for many famous special cases 
of (3) - see [a, 31.' 

'The list in the table assumes real-valued data. For complex- 
valued data, we replace e3 by elel' and define sign[a + j b ]  by 5 (signla] + j sign[b]). 
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An important performance measure for an adaptive fil- 
ter is its steady-state mean-square-error (MSE),  which is 
defined as 

MSE = lim E le(i)I2 = lim E Iu(i) + uzwtl2 , 
2 i w  2 - m  

where the weight error vector w i  is defined by 

- w< . (4) w .  - 
1 -  

Under the often realist.ic assumption that: 

- A . l  The noise sequence { u ( i ) }  is iid and statistically indepen- 
dent of the regressor sequence {u2} 

we find that the MSE is equivalently given by 

MSE = cr? + z i m  lim E I U ~ W , ~ ~  . ( 5 )  

We now proceed to derive expressions for the steady-state 
excess mean-square-error (EMSE), = limz-,m E I U ~ W ~ ~ ~ ,  

for various algorithms, along with values for the optimum 
algorithm parameters that minimize the EMSE. 

2. FUNDAMENTAL ENERGY RELATION 

Using (2) and (3),  we obtain the following recursion for the 
weight-error vector 

w2+1 = wz - p U: f e ( 2 )  + c p  , (6) 

where ct is defined by 

( 7 )  
a c7 = W O ( P  - 1) + q , + 1 P  - qz. 

We further define a-priori and a-posteriori estimation errors 

e,(z) = uZwl , ep(i) = U, (+%+I  - c,ejRz . 

Using the data model ( l ) ,  it is then easy to  see that e(z) = 
e,(i) + v ( z ) .  Moreover, if we further multiply (6) by U% from 
the left, we also find that 

as 

) 

where we defined, for compactness, p ( i )  = l / ~ ~ u z ~ ~ 2 .  Sub- 
stituting (8) into (6), we obtain the update relation 

w,+l = w, - p(z)u:[e,(z) - e,(i)l + c,e3nz . (9) 

By evaluating the energies of both sides of this equation we 
obtain 

IIwz+l - ~ ~ e ~ ~ ~ 1 1 ~  + ii(z)lea(i)12 = I I W , I I ~  + p(i)Iep(i)12 (10) 

This energy conservation relation, first noted in (4, 51, holds 
for &I adaptive algorithms whose recursions are of the form 
given by ( 3 ) ;  i t  shows how the energies of the weight error 
vectors at two successive time instants are related to the 
energies of the a-priori and a-posteriori estimation errors. 

2.1. Relevance to the Tracking Analysis 

We now use the energy relation (10) to evaluate the EMSE 
of an adaptive filter once it reaches steady-state. To do so, 
we make the following reasonable assumption (see, e.g., [l]): 

A2 In steady-state, the weight-error vector Wi takes the 
generic form zieJRi, with the stationary random process zi 
independent of the offset frequency R. Let z denote Ez i .  

Using (8), A.2, and EllWi+111~ = E ~ ~ w i ~ ~ 2  in steady- 
state, and taking expectations of both sides of ( l o ) ,  i t  can 
be verified that 

where Tr(Q) = E q2$. This equation can now be solved 
for the steady-state excess mean-squareerror (EMSE). Be- 
fore proceeding with solving (11)  for <, we can draw the 
following important conclusions: 

1 .  The effect of the random system nonstationarity is 
represented by the first and third terms on the RHS 
of (11) .  The first term, 2Tr(Q),  is independent of 
the frequency offset R and of the particular adaptive 
algorithm that is being employed. The third term 
is dependent on the algorithm and independent of 
Q. Cyclic system nonstationarities contribute to the 
second and f0urt.h terms on the RHS of (11). The 
second term, JIwo1)211 -e3*)’, depends only on SZ and 
l l ~ O ( 1 ~ .  However, the fourth term depends on the 
algorithm error function, fe(i). 

2. The fourth term on the RHS of (11)  could be eval- 
uated in the following manner. First, we multiply 
by e--JR‘ and apply the expectation operator to both 
sides of (6) to get 

Second, we solve the above equation for z at steady- 
stat,e. A similar procedure can be used to evaluate 
the third term on the RHS of (11). Several examples 
for using this procedure are given in the next section 
for various adaptive algorithms. 

3. We may also mention that it can be verified that the 
LHS and the last term on the RHS of (11) are inde- 
pendent of R for all the algorithms listed in Table I. 
Thus, these terms can be set to their values in the 
stationary case (i.e., at SZ=O). 

3. TRACKING ANALYSIS 

We now apply the above general procedure to various adap- 
tive algorithms from Table I. Due to space limitations, we 
omit some of the details and only highlight the main steps 
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in the arguments. The reader will soon realize the con- 
venience of working with (11) - see, e.g., (6, 71 for other 
steady-state and tracking results in the absence of cyclic 
nonstationarities and for random variations that are mod- 
eled by a first-order difference equation as opposed to (2). 

3.1. The LMS Algorithm 

For LMS we have f e ( i )  = e(i) = e,(i) + v(i) .  First, t,o 
calculate Ezi  at steady-state, we impose the widely used 
independence assumption 131: 

- A.3 At steady state, w i  is statistically independent of ui. 

Substituting f e ( i )  into (12) and using A.l ,  A.2 and A.3, it 
follows immediately that (see [l])  

where R = E u , u t .  Substituting into (11) and using A.l ,  
we obtain 

2pCLMS = 2pTr(QR)  + p2ui Tr(R) + p2 E l ( ~ . [ ( ~  lea(i)lz 

+ 11 - e3"I2 ReTr [ W O  (I - ax)] , 

x = (I - p ~ )  (I - PR - eJRI) 

(14) 

where W" and X are defined by W" = wowo* and 
- 1  

. 

To solve for cLMS we consider three cases: 

1. For sufficiently small p ,  we can assume that the term p2 
E llu2112 le,(z)I2 is negligible, so that 

- 1  

CLMS = 2 Tr(R)  + Tr(QR)  + %,B, (15) 

where 

p = 11 - ein[' ReTr [ W O  (I  - ZX)] . (16) 

2. For larger values of p, equation (14) can be solved by 
imposing the following (often st.udied) assumption (which 
is realistic for long filter lengths): 

- A.4 At  steady state, p ' I ( ~ i ( ( ~  is statistically independent of 
le, (2) I '. 
Using A.2, and (14) we directly obtain 

(17) 
CLMS = pu:Tr(R) + 2Tr(QR) +pcL- 'p 

2 - p Tr(R) 

3. For Gaussian white-input, signals (R = u:I), equation 
(14) can be more accurately solved by using A.3 to  yield 

, (18) 
CLMS = pA40;u: + 2u: Tr(Q) + c 

2 - p ( M  + X)u: 

where M is the filter length, X = 1 if the {u.} are complex- 
valued and X = 2 if the {ui} are real-valued. Moreover, 

Ilwo112 
1 1  - 

11 - pu: - 
c = a: (2 - pu:) 

For small values of i2 and jm: ,> (1-cos R), which is usually 
valid in practical cases, this term can be approximated by 

From these results it can be seen that, unlike the sta- 
tionary case, the steady-state EMSE is not a monotonically 
increasing function of the step size p. The EMSE is com- 
posed of three terms. The first term increases with p, the 
noise variance cr;, and U:. The second term is independent 
of p and increases with the random nonstationarity term 
Tr(Q). The third term decreases with p and increases with 
the frequency offset 0. This term becomes dominant for 
small values of p and causes the EMSE to increase with the 
order of p2 when decreasing p. Furthermore, it is clear that  
there exists a value of the algorithm step-size (po)  that min- 
imizes the EMSE in this case. This optimal value can be 
obtained by minimizing the EMSE in (18) over p. A rough 
estimate for p o  can be obtained, from (18) and (19), to be 

Here, we can see that t,he optimum step size increases with 
t.he frequency offset R and with ((w01l2, and decreases with 
the noise variance U," and the filter length M .  

3.2. The LMF and LMMN Algorithms 

For the case of the LMF and LMMN algorithms, we need 
only study the tracking performance of the LMMN algo- 
rit.hm and then obtain the LMF algorithm as a special case 
by setting 6 = 0. We assume the noise sequence is circu- 
lar so that E v 2 ( i )  = 0. Introduce also, for compactness of 
notation, 

6 = 1 - b, E Jv(i)I4 = 4; , E Iv(i)l6 = <:, y = 6 + 26~:. 

Now in steady-state, and when p is small enough, it is rea- 
sonable to  assume that lea(i)I2 << J V ( Z ) ~ ~ .  Using e(i) = 
e, ( i )  + v( i ) ,  we can then write the error function of the 
LMMN algorithm as 

f e  x b[e, + v] + 6[2e,1vl2 + t11v1~ + v2e:] . 

Substituting f e ( i )  into (12) and using A.l ,  A.2, and A.4, 
yields 

Subst.ituting int,o (11) and using A. l ,  one obtains 

2pyC = 2pyTr(QR) + p2aTr (R)  + p2bE llut1121ea(i)12 

+ ( I  - ReTr [WO ( I  - ZX)] , (21) 

where a = (6*u: + 266<: + 8'4:) , b = (62+866u; +9s2<,"), 
and X = [I - pyR] [I - p y R  - e3*1] - I .  

To solve for CLMMN we again consider three cases: 
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1. For sufficiently small p, we can assume that the third 
term on the RHS of (21) is negligible, so that 

CLMMN = puTr(R)  + 2yTr(QR) + p- lp  

27 

where ,L3 is defined as in (16). At 6 = 0, the above equation 
reduces to  the EMSE of the LMF algorithm, which is given 
by 

CLMF = pc: %(R) + 4u9 n(QR) + p-'P 
4u: , 

where X, for the LMF algorithm, is given by 

- 1  
I - 2 p a ; R  - eJR1) . 

2. For larger values of p, by imposing A.5, equation (21) 
leads to 

(LMMN = puTr(R) + 2yTr(QR) + p-',L3 
27 - pb Tr(R) 

3. For Gaussian white input signals with R = u21, equation 
(21) can be solved by imposing A.4 to  obtain 

where c is given by 

3.3. The Sign Algor i thm 

For the SA we have fe(i) = sign(e(i)] = sign[e,(i) + ~ ( i ) ] .  
Using Price theorem 181, ( I l ) ,  ( la) ,  (16), A.1, A.2, and A.4, 
assuming Gaussian signals {ui, v ( i ) ,  e ( i ) } ,  real-valued re- 
gressors {U*}, and using le,(i)12 << U; in st,eady-state, it  is 
straight,forward to  show tha.t 

SA pTr (R)  + 2aTr(QR) + 
2cr c =  

where (Y = @ and X = [I - paR] [I - paR - ej'I]-'. 
Finally, we may add that values for the optimum al- 

gorithm parameters could be evaluated by minimizing the 
EMSE expressions for the LMF, LMMN and sign algorithms 
using the same procedure used for the LMS algorithm in 
Section 3.1. 

4. SIMULATION RESULTS 

Figure 1 compares the theoretical and experimental MSE of 
the LMS algorithm for a wide range of the step-size p and for 
three different values of the carrier offset s2 (0.0001, 0.0002, 
0.0004). In the simulations, we used a white Gaussian input 
signal of unity variance, a 10 tap unknown system, U, = 3 x 
lo-', Tr(Q) = Each simulation point is the average 
of 50 runs with 3000 iterations in each run. 

I t  is clear from the figure that  the theoretical results 
are in very good match with t.he simulation results. For 

i 
I 

i 

-30 I 
001 OM 003 O M  005 006 007 008 * 

Figure 1: Theoretical and ezperimental EMSE versus p .  

s1=0.0001, we can see that  the experimental MSE possesses 
a well-defined minimum at p=0.035, which is close t o  the 
estimate provided by (20) - p0=0.0381. We can also see 
that  the minimum achievable MSE is degraded by 0.9 and 
2.39 dB, respectively, when 0 is doubled and quadrupled. 
This reflects that  the tracking performance of the algorithm 
is significantly affected by the frequency offset 0, even for 
very small values of s2! 
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