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ABSTRACT

We present a new derivation of exact least-squares
multichannel and multi-dimensional adaptive algo-
rithms, based on explicitly formulating the problem
as a state-space estimation problem and then using
different square-root versions of the Kalman, Chan-
drasekhar, and information algorithms. Moreover, by
exploiting the shift structure of the input data, we
further derive the fast multichannel RLS and lattice
filters within the same framework.

1. INTRODUCTION

Multichannel least-squares algorithms are common
in many areas of signal processing, such as two-
dimensional signal processing and image-enhancement
{1, 2], nonlinear filtering [3]. and adaptive beam-
forming. The associated exact least-squares recursive
methods basically fall into 3 main classes: transversal
filters and their corresponding fast versions [1, 4], least
squares lattice (LSL) filters [2. 5], and QR-based algo-
rithms [6, 7]. The algorithms are usually derived via
a variety of methods such as matrix partitioning and
matrix inversion lemma, geometric projection theory,
simultaneous solution of forward and backward pre-
diction problems, etc.. The derivations, even in the
single-channel case, are quite lengthy and their rela-
tionships are normally obscured by the different ap-
proaches.

Sayed and Kailath have recently proposed [8. 9, 10]
a unified square-root based derivation of (single chan-
nel) adaptive filtering schemes that is based on refor-
mulating the original problem as a state-space linear
least-squares estimation problem. In this process, rich
connections are encountered with algorithms that have
been long established in linear estimation theory, such
as the Kalman filtering algorithm, the square-root ver-
sions of the Kalman equations, the Chandrasekhar
recursions and their variations, and the information
forms of the Kalman and Chandrasekhar algorithms.
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In this paper we extend the aforementioned derivation
to the multichannel adaptive filtering case, which we
also reformulate as a state-space estimation problem.
The amount of data to be processed here 1s usually sig-
nificantly higher than in the single-channel case and
hence, reducing the computational complexity of the
standard multichannel RLS algorithm is of major im-
portance. This reduction is usually achieved by invok-
ing the existing shift structure in the input data. For
this purpose, we shall show how to apply the so-called
extended Chandrasekhar recursions [10, 11], with an
appropriate choice of the initial covariance matrix, in
order to reduce the computations by an order of mag-
nitude.

In multichannel filters, the number of weights in dif-
ferent channels is not necessarily the same. We shall
illustrate this with 2 examples: a nonlinear Volterra-
series filter and a two-dimensional filter; in the former
case the number of weights varies among the chan-
nels, but in the latter case all channels have the same
number of weights.

2. MULTICHANNEL LEAST-SQUARES
FILTERING

A general multichannel filter consists of M chan-
nels, where the desired response d(7) , assumed scalar

for convenience of exposition, is estimated by a lin-
car combination of the outputs of these channels. If

u!*)is the input vector to the kth channel at time
i, then the linear least-squares estimate of the desired
response d(i) is given by d(i) = Zi\il ugk)w(k) , where
wik) = [wlF) “’(1\’1?17‘ is the weight vector of the kth
channel. In general, the number of weights (Ny) can
vary among the channels and we shall denote the total
number of weights of the filter by N, = Zf:il Ny
By arranging all inputs and weights in N; x 1 column
vectors u/ and w, the multichannel problem can be
reduced to a single-channel RLS problem, where it is
desired to minimize the sum Zf\;o A=) = u,wi?,
where N 41 is the total number of data. By a rescal-
ing of variables, viz., by defining y(:) = d(s)/(vV})* and
x; = w/(VA)’, the above minimization problem can be
recast into a Kalman filtering framework by introduc-
ing an N;-dimensional state-space model of the form
(see [8, 9] for a related discussion in the single channel
case):
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Xip1 = /\_1/2)(,, Xo=w, Ilg =0l
y(7) = uexy +u(d), Ev(i)v*(j) = 8y (1)

Applying the Kalman filtering algorithm to the
above state-space model gives an estimate of the state
vector at time 7. This estimate is related to the es-
timate of the weight vector via w,; = (V%0
In fact a direct correspondence between the Kalman
and RLS variables can be established in this way [8],
and the Kalman filter equations lead to the usual RLS
algorithm (see, e.g. , [12, page 483]).

3. FAST MULTICHANNEL RLS

In several applications, the input channels ugk) ex-
hibit a shift structure of the form
ul® = [u®)@) WM -1y u® (i = Ny + 1)

In this case the multichannel filter is constructed from
M transversal filters where the linear least-squares es-
timate of d(z) is given by
M N
d@) =Y Y wP@u® -4
k=1 j=1
To exploit the shift structure of the multichan-

nel filter, we form a state-space model of dimension
M(N + 1) as follows:

Xig1 = ATV2x,, y(d) = hix, + (i) (2)
X0 :[ W(l)T ON—N1+1 W(JW)T ON—N)\,1+1 ]T
h, = | w1 () WD) on_;

lst Channel

uM(z) uMio) onx_, ]

Mth Channel

The Kalman filter of the above state-space model is
given by
V25 + ke [u() = b )

Rig1pe = A7 o
Tei =1+ Py _1h!, k =A"12p, |n;

P1+1I: =21 [Pt\t—l - Pt|i—1h|‘7':y,lthlh—]} (3)

The initial state-covariance matrix in the multichannel

case will be a block matrix of the form,

Poy-1 = Elxo — %o/_1][%0 — %o/—1]* =
A0 L A
()} 0 ... o 0 @
MU o L AMMY
0 0 ... 0 0

)

where each Wékl is an Ny x N; matrix, and the diagonal
(kk)

matrices 7y ’should be positive definite.
Note that the block vector h; satisfies the rela-
tion, hy = h;1 ¥, where ¥ = Z@® Z @ ... 9 Z is

a block shift matrix. Due to the shift structure of
h;, viz., h; = h;;, ¥, the proposed state-space model
(2) falls into the class of structured time-variant mod-
els for which the extended Chandrasekhar recursions
[9, 11] can be used to reduce the order of computa-
tions. These recursions are based on the factorization
Pipip — WiPy;2 V) = LiSL? , where L; is a low rank
M(N + 1) x a matrix. Due to the special block struc-
ture of Py|_; and h;, the matrix Ly and the gain vector

kyi =k [/* | will be of the form:
T
Lo=[ 1" o ... Ef)M)T o],

P nT mT
kw—[cg) ON-N;41 .- cE )

where LY is (N, + 1) x a.
By defining ﬁgj) to be a row vector of the first

Nj + 1 coefficients of the jth channel of h;, the ex-

tended Chandrasekhar recursions for the structured
state-space model (2) then leads to the following fast

RLS algorithm in square-root array form:

T
ON—Npyr+1 ]

1/2 M (7)) 7(
e s B LY
.
CEJ) ['/il)
A-1/2 : @ =
0 L(.M)
(M) '
C’l J
T:,/li‘l 01xa
.
C1+] .
(1)
0 Ly )
(A) 7 (A)
Cit1 Ly
0

where ©; is any (1@ S)-unitary matrix that produces
the block zero at the right hand side of the above
equation. To apply these recursions, we first have to
compute a (nonunique) factor Lo defined by

LoSLy = A 7'(Pojoy — kpoklo) — UPy ;0% (6)

where S is an « x o signature matrix. In this way, the
order of computations reduces to O(a(N; + M)). The
value of « (rank of Ly) depends on the choice of the a
priori covariance matrix Ilo = Fy_,. The choice Iy —
oo guarantees that the limiting case of the stochastic
Kalman filter is the deterministic RLS problem. But
in practice other choices of TII, are of interest and
they affect the complexity of the algorithm (see also
(13, 14]). For example, there are cases where it is
preferable to start the recursive algorithm with a non-
zero 1nitial value xp; in order to change the tracking
capability of the algorithm or to start with an initial
guess obtained by another method.

By choosing a finite 1, the total error criterion is
then given by:

. )‘N—zd-_lz *7‘H—1 W
n;nzo ld() = wiw [ + (w — w)*TI; (w - w)
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with, w = Ew, E(w—w)(w-w)* = IIp. The solutions is
still the filter equations (5), but with initial conditions

P()I_l = HO and X0|_1 =Ww.
3.1 2D FILTERING

In 2D filtering problems, a large class of real-world
images can be modeled as [15] a 2D auto-regressive
process of the form:

w(ivg)= Y wkuli= K, j = 1)+ n(i,)
(k)ER

By arranging the elements of R in a block vector u;, it
can be shown that u; has a shift structure of the form
u; = u;41V, where ¥ is a block shift matrix. For
example, Fig. 1 shows the case of a casual window,
where each row of the window is considered as a sep-
arate channel. At each step, all channels are shifted
separately by one pixel, and by putting the rows in
a block vector, the aforementioned shift structure is
obtained.

1st Channel —> ul(i+1)

2nd Channel —= ufi)

Mth Channe] —

u (i+1)
M

Figure 1: The 2D casual model and the corresponding channels

In this case all channels have the same number of
weights (N, = K), and all 1{*" matrices willbe K x K
square matrices. The prewindowed case, and assum-
iné no correlation between different channels, leads to
a diagonal choice for Py_,. In order to obtain a low

value for «, we choose HE)“) as follows:

kD _ diag{\ N2, . AN k=
[ ) k#£1

then ()\‘IPO|_1 — WPy _,¥*) will have rank 2M (o =
2M) and will be equal to

A

A

where A is the block-diagonal matrix

1
0 0
A= —AK

0 0

So the above choice of the prior covariance matrix re-
sults in an algorithm of complexity O(2M N,), which
is the complexity of the existing fast multichannel
transversal filters [4, 7]. But the order of computa-
tions can be further reduced by other selections of
the prior covariance matrix. In fact, by choosing
Hékl) = diag{A, A%,..., A%} for all k, I, the expression
/\‘1P0|_1 — VP -1 ¥* will be equal to:

A A A
A A A
A A ... A

which leads to a rank 2 matrix (o« = 2). In this way we
obtain a fast 2D filter with computational complexity
O(2N), where N, is equal to the size of the window or
MK. For example, for a 2D filter with a square win-
dow (M = K), this special choice of Pyj_; reduces the
order of computations from O(M?3) to O(M?). There-
fore, this choice of Iy exploits the input shift struc-
ture better than the existing algorithms and reduces
the computational load by an order of magnitude.

3.2 NONLINEAR FILTERING

Another example arises in the problem of adap-
tive nonlinear Volterra-series filtering [16], where the

input-output relationship of a 2nd order filter of de-
gree N is given by:

N N N
y(n) = Z wiz(n — i)+ Z Z wijz(n — i)z(n — j)
1=0

1=0 3=0
By proper arrangement of the inputs into M channels
(where M = N + 2), the shift structure of the filter
can be fully exploited (Fig.2).

1st Channel —  z(n)
2nd Channel —  z2%(n)
3rd Channel —

z(n - N)
z2(n — N)
z(n — N+ 1)z(n~ N)

Mth C-hannel — z(n)z(n — N)

Figure 2: Shift structure of a Volterra filter

In this case the number of weights in all the chan-
nels (except the first two) is different, Ny = Ny =
N+1, Ny =N -i+43, (3 <i< M). By choos
ing Hgkk) = diag{),A%,.. ., AN+27%} and &' = 0 for
k # 1, o will be 2M. Since the total number of weights
for the nonlinear filter is O(N?), the overall order of
computations of the fast nonlinear filter will be O(N3),
which is the same as the complexity of the existing fast
nonlinear adaptive filters.

4. MULTICHANNEL QR AND LATTICE

The multichannel lattice algorithms can also be de-
rived from the original state-space model by applying
the square-root in%armatz'on form of the Kalman filter
[8, 17], which directly leads to the QR algorithm

VAT SR L HE o
Viai_, d*(i) | @i = al e (i)y)! (7
0 1 “‘¢:‘/2 %1/2

where e(7) is the a-priori error, 7; is the conversion
-1/2
factor, o = & 12, @&, = DBy

7=0
Z;ﬂ AtTId(f)ul.

/\’—’u;uj, 6, =

Hence, the least-squares error due
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to estimating d(Z) can be obtained via an array equa-
tion as above. This observation readily allows us to
derive the corresponding lattice array equations as fol-
lows: consider the case of a multichannel transversal
filter where all the channels have the same number of
weights. Then wector forward and backward predic-
tion errors can be defined as [5],
ff=u()—a@li=1:i-k)
bf  =u(i—k—1)—0(i—k—tli—1:i-k)
where u(i) = [(V() w(? () WM)(§)]T, consists of
the most recent inputs of all channels. Knowing f*
we shall try to determine ff‘”, which is the forward
prediction error at time i in estimating u(i) from
u(i—k~1),...,u(i—1). Notice that we are using
the same input data as ff, except for u(i — k — 1),
and so we only need to incorporate the new informa-
tion that is in w(i — £ — 1) and not in the previous
data. But this new information is nothing more than
b* . So, fik+1 is the least-squares error of estimating
ff using b¥_,, and can be propagated using an array
structure similar to (7) :
5b/2 - £b/2
\/Xéki)z~2 ki:‘—‘;l ]c;)b _ [ q)k,l—l B (? )
Asil, I LTSN
where £/ and b¥_| are normalized forward and back-
ward prediction error vectors of order k at times i
. ; b b2 b —
and i —~ 1 respectively, &, = 076, ®, =
i —IhEkRAk gb . N 5k Tk
PIPR ] 1 N D DHINPE T B
Backward errors can be obtained by following a
similar argument leading to
f/2 7* %S /2
\/X(Dk,:—l fzk e/ = CDA-; ) 0
aapr bk koo apf Bty
where the normalized quantities are defined as 3/
t t—)fkfxk af — 2 -7} f*k =f —
PO 1 e A D DO Ul L L
o1/,
The joint process estimation can be performed by

using the sequence of orthogonal backward prediction
errors  {b*} and the array structure:

i

Zb/2 ok =b/2
=*dd =%k =1 7 —xd _x{ k41
\/Xaktz—Z €d,i—1 R €aa

4 s-b/25q4 id  _ v t—3R[rkzk
where af =" g¢ ., and ak,z_Z]zo ATIbTREG -

In this way, d(¢) is estimated by a linear combination
of the backward prediction errors.

In the cases where the number of weights of the
different channels is not the same, the backward and
forward prediction errors of different sections of the
lattice filter are of different dimensions, and a simple
extension of the scalar case will not work any more.
This problem can be solved by an appropriate defi-
nition of backward and forward prediction errors and
by appending a set of auxiliary terms to the predic-
tion error vectors at each stage [5]. It can be shown
(18] that the computation of these auxiliary terms has
a form similar to the joint process estimation prob-
lem and can be done using the basic array structure
proposed here.

5. CONCLUDING REMARKS

We presented a unified derivation of multichannel
adaptive filtering algorithms by proper identification
with well-known algorithms in state-space linear least-
squares estimation theory. We further remark that
the generalized shift structure allowed by the extended
Chandrasekhar recursions allows us to consider more
general structures in the input data [8, 18].
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