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ABSTRACT

We describe a unified square-root-based derivation
of adaptive filtering schemes that is based on refor-
mulating the original problem as a state-space lin-
ear least-squares estimation problem. In this process
we encounter rich connections with algorithms that
have been long established in linear least-squares esti-
mation theory such as the Kalman filter, the Chan-
drasekhar filter, and the information forms of the
Kalman and Chandrasekhar algorithms. The ap-
proach also suggests some generalizations and exten-
sions of classical results.

1. INTRODUCTION

Adaptive filtering is widely used to cope with time-
variations of system parameters and to compensate
for the lack of a priori knowledge in the statisti-
cal properties of the input data. For a variety of
reasons, the least—squares criterion is used to derive
linear estimators for the desired parameters, and a
wide range of algorithms and schemes has been devel-
oped that exploits the data structure and reduces the
computational complexity. These basically fall into
four main groups of adaptive filtering algorithms (see,
e.g.,[1, 2, 3] and the references therein for extensive
discussions): Recursive Least Squares (RLS) and the
corresponding fast versions, Lattice Least-Squares
(LLS), QR-based least—squares, and gradient-based
algorithms. The different adaptive schemes have been
derived in a variety of methods; the derivations are
usually lengthy and the resulting algorithms are nor-
mally described by a large set of equations and vari-
ables. Moreover, the connections between the differ-
ent algorithms are usually obscured by the different
derivations. Qur purpose is to describe an alternative
approach, which is unifying and clarifies the connec-
tions that exist among the different algorithms. We
pose the original adaptive problem as a Kalman fil-
tering problem, which has been well studied and in-
vestigated since the early sixties. We then show that
the different adaptive algorithms can be interpreted
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as old and long established algorithms in state-space
linear estimation theory. Moreover, this approach al-
ready suggests some generalizations and extensions of
classical results [4, 5, 6, 7].

2. STATE-SPACE ESTIMATION
ALGORITHMS

We first review some basic algorithms in linear least-
squares (lls) estimation. We consider a p x 1 process
{yi} with an n-dimensional state-space model of the
form

Xip1 = Fixy, yi= Hxi+ vy 0}

where F; and H; are n X n and p X n known matrices,
respectively. We assume that xp and v; are uncorre-
lated stochastic variables with Exq = ig,Ev.- =0,
E(Xo - J_(())(X[) - )_(g)* = Hu, and EV, * R46.J
Let X;;_1 and ¥;;_1 denote the linear least-squares
estimates of x; and y; given the past i observations
{¥o,-. -, ¥i- 1} respectively. The recursive procedure
that relates X;41j; to X;;-1 is a special case of the
well-known Kalman filter algorithm, whose derivation
is straightforward once we invoke the innovations con-
cept. Define the innovations process ¢; = y; — y,|, 1,
which represents the new information in y; that is
not contained in the space spanned by the past ob-
servations. The point is that the innovations are un-
correlated with each other (Ec, = R”6,J) which
readily implies that %4, = Fx,|,_1 + K:R }ei, where
we defined K; = Exij1¢r. If we introduce the co-
variance matrix Py = E(x; — iji—1 )% — %iji1)",
it then follows that Re; = HiPy;_1H! + R; and K, =
FiP,;_yH?. 1t also follows that P,;_, satisfies the
following Riccati difference recursion: Poj-1 = To,
Py = FiPyio1 F? - KiRIKY.

The Kalman filter propagates the Riccati variable

Pyj;_;. In some applications, however, the initial un-
certainty in xo can be high (that is, Iy — oo) For
these cases it is preferable to propagate PI*— , and
the resulting algorithm is usually referred to as the
Information filter 8], which can be easily verified to
be given by the equations

-1 — —* -1 *p—lpr -1
pl+l|l - F [Pllt- + H' Ri H‘] 'Fl
R} = R -R7HF P FT*H!R]?

P;l“.-iiuh F* [Pif.-l_liqi—x + H,"RTJY.‘]
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It is also straightforward to verify that these equations
can be grouped together and rewritten in square-root

form as follows (see, e.g., [8]):

Foop=t?  FreHrR7T?

ifi—1

- —=*/2 —*/2 -
x:li—lpili—ll ¥R */ 0 =
0 R
—s/2 ' (2)
Pi+1|c 1 0 /2
*:“+1|-‘P.‘+1;-‘/ E:Rc,-‘/
-1 -1 2 —uf2
R HF; P.'+1|.' R«,-‘

where ©@; is any unitary matrix that produces the zero
entry in the postarray.

The number of operations needed in going from in-
dex i toindex (i+1) in either the Riccati-based filter or
the information filter is O(n3), and this is true whether
or not the state-space model has constant parame-
ters. However, one expects a computationally more
efficient procedure in the case of time-variant models
that exhibit certain structure in their time-variation.
For this purpose, the state-space model (1) will be
said to be structured if there exist n X n matrices ¥;
such that F; and H; vary according to the following
rules: H; = H;1¥; and Fi ¥ = ¥4 F;. We fur-
ther assume that the covariance matrices R; are con-
stant for all ¢ (R; = R). Define Kpi= K.'R(’I..'”, and
let $ be an « X « signature matrix defined as follows:
a = rank (P1|0-\I’0P0|_1\I’5 = LQSLE) It can be eas-
ily shown that for such models the quantities K, ; and
R, ; can be alternatively propagated via the so-called

extended Chandrasekhar equations [5, 9, 10]:

1/2 . . 1/2
R Hip1Li e = }'1:51';“ 0 @)
Fip1L Kpi+1 Liya

Wit1Kp,
where @; is any (I S)—unitary matrix that produces
the zero entry in the postarray. For sparse enough
matrices ¥;, the number of operations needed per it-
eration is O(n?) if p < n and a K n.

3. THE RLS PROBLEM

The basic problem in linear least-squares estima-
tion reads as follows: given pairs of data points,
{uw;,d()}L,, where u; is a 1 x M row vector that
consists of the values of M input channels at time
i, uj = [ w(d) upm () ] (d(7) and wu;(¢) are
assumed scalar for simplicity), we are required to
determine the linear least-squares estimate (denoted
by wn) of an M x 1 column vector of unknown
tap weights w so as to minimize the exponentially
weighted sum Z‘.’io AN=i|d(i)—u;w|2, 0< A <1, which
is equivalent to minimizing over xg = w the expres-
sion Zf__o ly(s) - uix;[?, where we defined the normal-
ized quantities y(i) = d(3)/(VA)' and x; = w/(vA).

Now, the latter expression can be easily recast into a

Kalman filtering problem by considering the following
M —dimensional model

Xi+1 A_l/zx,', Xo =W, Hg = ool

(i) = wxi+v(3), Ev(@Ww (J)=6; (4)
Let w; denote the weight vector estimate given the
input data up to time ¢. This is clearly related to
the state-estimate via w;/(VA)'*? = %;4);, which is
given by Roj-1 = 0, Xipy)i = )\‘1/25&("_1 + k."r:"-le(i),
where  €(i) = y(i) — wikiji—g, ki = A"V2P 0], rei =
1+ u;Py_juf, and  P;;_, is the error covariance
matrix that satisfies the Riccati difference equation
P.-+1|,' =1 [P,'|.‘._1 - ,‘|,<_1u;r;'-1 uipn'|i-l] . The Kalman
filter variables {ki,rci, Piy1i} are scaled versions of
the RLS variables as usually described in the litera-
ture. To clarify this point, we first note that (using
Ppli=0) PRl = PRl 4 ujwi=AY M iuju, =
A®;, where &; is known as the weighted autocorrela-
tion matrix. If we define the RLS variable P, = ¢!,
then we get P; = MP,y;;. Moreover, the a pri-
ori error e(i) = d(f) — u;w;_,, is clearly related to
the innovations by €(i) = e(é)/(VA)'. The a poste-
riori error eP(i) = d(i) — u;w;, can be written as
eP(i) = d(i) — (VXY ukipay = e())r]]. That is,
the conversion factor %;, which converts the a priori

error e(i) to the a posteriori error € (i), is given by
i

Y% =T We can finally, rewrite the Kalman filter
equations in terms of the original RLS variables:
w; = Wi +8gie(i), wo1 =0
ATIP u:
& = T3 uP_ju ®)
Pi = APy -giuwiPia], Poy=ol

for ¢ > 1, and where we defined g; = \/:\-k,-r:,,-l. In
summary, the Kalman variables and the RLS variables
are related as summarized in the following table.

KF RLS

y(3) d()/ (V)

x; w/(VA)!
R || wi/(VA)'H
APy P, ="

Vakir 7| &
(1) e(i)/(VX)*
rol i

For a variety of reasons, it is sometimes prefer-
able to start the recursive algorithm with a non-
zero initial value w_;. This change can be incor-
porated into our derivation by assuming Exg =
Ew = w. This corresponds to the error criterion
minw [(w - W)*TIg (W — W) + 300 AN=ld() — wiw?],
with E(w—w)(w—w)* = II;. The state-space model
(4) remains unchanged except for the new values of
Poj—y =Tlo and Xpj—1 = W.
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4. FAST RECURSIVE LEAST SQUARES

We now further assume that the input channels ex-
hibit shift structure, viz., u;(3) = uj-1(¢ — 1), or
w = [u(d) u(@i-1) u(i—-M+1)]. To ex-
ploit this fact, we consider the following (N + 1)—
(not M —) dimensional time-variant model

Xit1

y(3)

A, xo=[wT o]T
hixi + (i), Ev(i)v*(5) = & {6)

where x; is now an (N +1) x 1 state-vector with trail-
ing zeros and h; = [ u(i) u(i-1) u(0) On_; |
is a1 x (N + 1) row vector. An initial state covari-
ance matrix (with trailing zeros) is also assumed, viz.,
E(xp - Ro)(x0 ~%o)* = [lo 0 = P0|__1. The Kalman
gain ky; = k;r:;/? also has trailing zeros, kj; =
[ e 0], say. The computational complexity of the
RLS algorithm is O(M?) operations (multiplications
and additions) per time step. However, though time-
vartant, the special structure of h;, viz.,, h; = h; 1 Z,
can be further exploited to reduce the operation count
to O(M), where Z denotes the shift matrix with ones
on the first subdiagonal. Observe that this relation
(along with Fi41Z = ZF,, since F; = A~'/2]) shows
that the state-space model (6) is indeed structured.

The reduction in operation count can now be achieved
by using the extended Chandrasekhar recursions with
W, = Z. Solet LoSL = Pyjo — ZPy-12*, where Lo

is clearly of the form Ly = [ L3 o] and Lo is

(M +1) x a. Let h; be the row vector of the first
M + 1 coefficients of h;. Then

2 . s
ri£ hij1L; o - T:,liil 0
HE L I

Cq

where ©; is any (16 S)—unitary matrix that produces
the zero entry on the right hand-side of the above
expression. The computational complexity of each
step is O(aM), where the value of o depends on the
choice of IIg. This recursion is a square-root version
of the fast RLS algorithms (FAEST,FTF) discussed
in the literature {11, 12]. We further remark that
the connection between the Chandrasekhar recursions
and fast RLS algorithms was also discussed in {13, 14]
by considering a particular time-invariant state-space
model. Our derivation addresses the same problem
within the more general framework of structured time-
variant models. This allows us to consider more gen-
eral cases that arise for instance in multidimensional,
multichannel, and nonlinear adaptive problems, as we
show in [6]. Moreover, though we assumed that the
channel inputs obey a shift structure, our approach
makes it clear that we can also obtain fast algorithms
for other cases as well [7]: for example, if the input vec-
tors u; satisfy a relation of the form u; = u;;1 ¥, for

some constant matrix ¥, then the state-space model
(4) is still structured, and we can write down the cor-
responding extended Chandrasekhar recursions. Fi-
nally, our framework also allows us to go beyond the
RLS approach and to derive the so-called QR and lat-
tice algorithms, as we shall now show.

5. THE QR ALGORITHM

We can alternatively apply the square-root informa-
tion filter (2) to the state-space model (4). This di-
rectly yields the well-known QR algorithm [2, 3] (by
using the correspondence established in the previous
table), viz.,

Vael? ®!/? 0
Vial, d*(¢) |@i= al *(3)
0 1

[
“i‘l’.'—‘/z ,."_’ /2

where we introduced the (angle) normalized a poste-
riori error  &(i) = e*(i)v}/* = e*P(i)y,"/?, and defined
a; = #7%0; with 6 = Z;=o A“id(i)ug. If we closely
examine the QR array equation then it is clear that
it can be interpreted as follows: if we want to (recur-
sively) produce the new information that is in d(7) and
not in u;, then we form a pre-array as above and (or-
thogonally) triangularize it to obtain the (normalized)
estimation error. This observation is very helpful in
the derivation of the order-recursive lattice algorithm,
as discussed below.

6. ORDER-RECURSIVE LS ALGORITHMS

Assume again that the input channels exhibit shift
structure. We now describe an alternative so-called
lattice filter implementation that leads to an order-

update procedure as we further explain: let f¥ denote
the M** order a-posteriori forward prediction error at
time ¢, which is due to estimating u(¢) from the M
input values {u(i — M),...,u(i — 1)}. Knowing fM
we shall try to determine fM*!, which is the (M +1)**
forward prediction error at time i in estimating u(%)
from the M +1 data points {u(i—M —1),...,u(i-1)}.
Notice that we are basically using the same input data
as before except for u(i—M —1), and it is clear that all
we need to do is to update fM in order to incorporate
the new information that is in u(é — M — 1) and not
in the previous data. This suggests that we introduce
bM,, which is the M*'* order a posteriori backward
prediction error at time i —1 in estimating u(i— M —1)
from these M input values {u(i — M),...,u(i — 1)}.
In other words, the new information that is required
to update fM to f¥*! is contained in 6¥,, so that
we are reduced to the setting described at the end
of the previous section. That 1s, the associated array
equation (in terms of normalized quantities) is given
by

b/2
IS, BM Bpria 0

~ub FeM Sb =k *(M+1)
Va3, ;f."z Ofi-1 = 0’34,.'—1/ f.’/
_ M sz 12

0 ¥ili,M b ®arily Wili M4
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where the normalized quantities are defined by &5, ;

i i—jfeMEM  gb  — § i—jfeM FM b
Zj:o’r/ TTHb, Oy = Z,:o AT BM =
b sb/2
02/ ®arse

We are still left with the problem of getting an up-
date recursion for the backward error. But this can
be obtained by following a similar argument, leading
to

\/X@f‘éi_l fi‘M f ‘i{uﬁ; (134-1)
—* I i ey I
‘/X"'M,:—x f}‘;{ E)M,i = O’M’,i ) b
- z— <1/2
0 Yilim f.'M‘I’M',.'H '7.',,M+1

where the normalized quantities are given by ‘I’Jjw,.’ =
I LD S
5‘{,,../<i>ﬁj. The above arrays constitute the square-
root form of the so-called (order-recursive) QR least-
squares lattice algorithm [2, 3], which is usually pre-
sented in an extensive set of equations. The above
derivation yields the arrays directly by noting that the
forward and backward prediction problems are special
cases of the standard least-squares problem and by
writing down the associated information filters.

7. LEAST-SQUARES LATTICE

The least-squares lattice filter now follows directly by
squaring and comparing terms on both sides of the
square-root arrays, leading to [2, 3]

M+1

bMAL = M, kMM
M M

A FM - kM,

where k% = B_f’u‘,-_l/@ﬁ,!,i_l, k{,‘ﬂ = 0—{4"./@1{4’;, and

YN C TSN il G TSRS TR s
M Mi-1 Ty M M Mi=2 T A M
B B MM ~ fMprM
2l =g, . + _'_.._';..Y 4 i = AG8 o
My M=l oM Myi-1 Mi=2 T oM

8. JOINT-PROCESS ESTIMATION

We can also follow a similar argument as in the
case of the order-update recursions and derive an
order-recursive procedure for the llse of the in-
put signal d(i). This follows easily by consid-
ering the sequence of orthogonal backward errors,

_{..., bM bf"'“, bM+%,...}, and using the follow-
ing array equations
2b/2 TeM bf2
‘/XQM,.‘—z b:;ll R ‘I’M,i—l (13“)
—ed - 2 _ —ad _»
asd ., 5]5};—1 Ohio1 = 0‘34,-'-},/ edjx—-l
= M g-+bj2 ~1]2
0 Yim1,M b @ity Mill M4

where 52,{'—1 = é}ﬁ’_,?}_/z w18 the a-posteriori joint-
process estimation error due to estimating d(i — 1)
from the data values {u(i— M),...,u(i—1)}, a4, =

ad  &d/2 ad _ | —jTeMz
GM,i/‘I)M,i: and B = Z;=o At Jb]Megl,]'

9. CONCLUDING REMARKS

We presented a unified derivation of different classes
of adaptive filtering algorithms (in square-root form).
This was done by embedding the standard exponen-
tially weighted least-squares problem into an appro-
priate state-space model. Then the RLS, fast RLS,
QR-, and lattice algorithms readily follow by proper
identification with well-known algorithmsin the linear
least-squares estimation theory literature, such as the
Riccati-based Kalman filter, the Chandrasekhar filter,
the information filter, and the corresponding square-
root versions, We further remark that most of the
results described here extend smoothly to the mul-
tichannel, multidimensional, and nonlinear adaptive
problems as we show in {6]. Moreover, the general-
ized shift structure allowed by the extended Chan-
drasekhar recursions allow us to consider more gen-
eral windowing schemes, and extensions as discussed
in [4, 5, 7].
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