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ABSTRACT

We use the classical Schur reduction procedure to give
a lattice filter implementation of the Chandrasekhar
recursions. The derivation is based on the observation
that the covariance matrix of a process with time-
invariant state-space model is structured. This al-
lows us to derive easily the connection between the
Schur algorithm and spectral factorization and to ex-
tend the Chandrasekhar recursions to the case of non-
symmetric Riccati equations. We also remark that
the Chandrasekhar recursions can be implemented in
scalar steps using a sequence of well defined elemen-
tary (hyperbolic and Givens) rotations.

1. INTRODUCTION

We use the classical Schur reduction procedure [1]
to give a lattice filter implementation of the Chan-
drasekhar recursions, which are known to provide a
fast algorithm for the solution of the Riccati difference
equation associated with least-squares estimation for
constant-parameter state-space systems [2, 3]. The
approach in this paper applies whether the observed
signal is stationary or not and also gives a simple
derivation of the connection between the Schur algo-
rithm and spectral factorization. Recently there has
been renewed interest in the subject, e.g. in [4]
a connection between the Riccati equation and the
matrix version of the Schur algorithm is pointed out.
However the approach in [4] applies only to the sta-
tionary case and does not reveal clearly why such a
connection exists. It should be noted that the relation
between the (generalized) Levinson algorithm and the
Chandrasekhar equations was shown much earlier [5].
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Our derivation reveals explicitly the connection be-
tween structured matrices, spectral factorization and
Kalman filter theory. First, a brief review of known
results. Consider a p x 1 process {y} with an n-
dimensional time-invariant state-space model:

ziy1 = Fzi+ Gy
Yi Hz; + Dv;

for i >0

where {F, G, H and D} are known matrices with
dimensions n x n, n x m, p x n and p X g respec-
tively. We assume that zo, u;, and v; are stochastic
variables with zero mean and satisfying

Exozf =1l

E{[Zf][%’ v 336]}:[3 g g]%

with R positive-definite. The symbol é is the Kro-
necker delta function, * denotes complex conjugation
and the letter E denotes expected value. Let &;/;_1
and g;/;—1 denote the linear least squares estimates of
#; and y; given {yo, ..., Yi—1} respectively. The in-
novation in y; is defined by e; = y; — §i;—1 and forms
a white-noise innovations process [2] with p x p co-
variance matrix R{ = Ee;e}. We denote by {v;} the
normalized innovation process obtained from {e;} :

vi = (RS)™Y2%;

Let II; = E(ziz}) denote the n x n state covariance
matrix at time i. The Kalman filter [2] computes
these quantities via the recursions:

Uijior = HEpi 1
i’H_l/i:F:i‘i/i_l-l-lf,'(Rf)_lei s io/_l =0
H,‘+1 = FILF* + GQG™

where K; is the n x p matrix defined by K; = Fz;q1€].
It is easy to verify that K; and R{ can be computed
by the expressions
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K;= FP,H*+ GCD"* and R; = HPH" + DRD*

where P, is the error covariance in the one-step pre-
diction of z;:

P; = E{(zi — &iji—1)(%i — #ific1)"}

and satisfies the Riccati difference recursion:

P41 = FPF~ ~- KR +GQG" (1)
Py =M, and K;= Ki(R§)™*/?

In the stationary case (i.e. F stable and Ilo is the
solution of Mg = FIoF* + GRG* ) R; and K;

converge respectively to
R® = HPH* + DRD* and K =FPH"*+GCD"

where P is the steady-state solution of the Riccati dif-
ference equation (1). It is well known [2] that the
power spectrum Sy(z) = E [Y(z)Y"(%)] of the out-
put process can be factored as Sy(z) = W(z)W*(1)
where W (z) is the transfer function from the normal-
ized innovation process {v;} to the output process
{wi}
W(z) = (R)V?>+ H(zI - F)7'K

We can check that the number of operations (i.e. mul-
tiplications and additions) needed in going from index
i to index (i + 1) in the Riccati recursion is o(n?) [2].
This complexity can be reduced to O(n?) in the case
of time-invariant systems, where the Riccati difference
equation can be replaced by the Chandrasekhar re-
cursions [6]. We give a new derivation of this fact,
showing that the recursions arise by combining state-
space structures with the Schur algorithm for Toeplitz-
related matrices (see, e.g. [1]).

2. DERIVATION OF THE
CHANDRASEKHAR EQUATIONS

Let R = E(y: Yj )i=0 denote the covariance matrix of
the output process {y;} and define Z to be the lower
triangular shift matrix with ones on the p'* subdiago-
nal. Clearly R is a Hermitian positive-definite block-
matrix with p X p block-entries. The Chandrasekhar
recursions exploit the fact that the process {y;} is the
output of a time-invariant state-space model. In this
case R turns out to be a structured matrix, in the
sense that R — ZRZ* has low rank.

Fact (Some Useful Expressions) The following are
valid identities:
My, —1; = FAF®
Blyy; —vi¥i_y) = HFODAFPCDH
E(uyiy: — vio1y}) = HFCTUAFTH

Il

Il

where A =1I; — ;. ]
These expressions lead to R — ZRZ" =

Rs  KjH*  KjF*H*
HK, HAH* HAF*H*
HFK, HFAH* HFAF*H*

There is significant redundancy in the elements of R—
ZRZ* To explore this, we first factor the leading
2p x 2p principal submatrix

R; Ki{H* ]

Rap = [ HK, HAH* )

into the (rank and inertia revealing) form

(Re2 0 1[1 o J[@®)M 0]
A B 0 -S A B

for some signature matrix S and matrix entries A
and B to be determined. Comparing (2) and (3) we
conclude that A = HKo and BSB* = H(P,—P)H".
This suggests that we introduce the (nonunique) fac-
torization Pp— P; = Lg.S'ff'(; where Lo is an n X r ma-
trix and S is the r x r signature matrix of (Po — P1),
i.e. S has the form

-1, ©
S:[ 0 L,]’ yHo=r

Hence we can take B = HLo. Moreover, we can now
check that we can write

R—-—ZRZ* =GJG”

where
(R 0
L, 0 HEKo HLo
J:[o _5] and G=| HFK, HFLo

We say that R is a Hermitian near-Toeplitz block-
matrix with respect to (Z,J) and G is called the gen-
erator matrix. The block-triangular factorization of
such R can be computed efficiently (and recursively)
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by using the Schur reduction procedure [1, 7}, which
reduces to the following generator recursion:

-
Giy1
g.-e,»[op 1,]+ng9‘[lp or]’ Go=6

where ©; is a J-unitary matrix (i.e. ©;JO] = J)
chosen such that the top p rows of G; (denoted by
g; ) are reduced to the form ¢;0; = [ r; O ], where
r; is a p x p matrix. Therefore, the generator G;y1
is obtained by multiplying G; by ©; and then shifting
down the first p columns of G;©; by p steps. We now
apply this algorithm to the generator of R. The first
step involves multiplying by ©g, which is the identity
matrix since the first block-row of Gg already has a pxr
block zero, and shifting down the first block-column:

(RO HLo
HE, HFIL,
G1=| HFE, HF’L,

We now define the p x », p x p and r X r matrices
ky,d; and q; respectively, such that:

ky = (Rg)"Y?HLS
dy = (I, — k1 Sk})=1/?
018q; = (S — kik1)™!

and consider the matrix ©,

[, -k 1[d O
o[ 3% 0l

We can verify easily that ©; is a J—unitary matrix

such that
(RE)M?  HLg o = (R$)M? 0
HE, HFLy| '~ | HK: HL
where P, — Py = Ly Si“l‘ Therefore G109 is equal to
(Ri)~1/2 0
HEK, HI,

HFK, HFIL,

Next we shift down the first p columns, form ©; and
so on. In general, k; = (R{_,)"Y?HL;-1S, di =
(I, — kiSk})~™Y2, q:Sqf = (S —kjki)™' and

o I, —k; d; O
o=[ % T][5 2]

This recursive procedure has the lattice filter inter-
pretation shown in figure 1. We see that because of
the special state-space structure of the elements of
the generator of R, there is significant redundancy
in the generator array: the first two nonzero rows tell
enough to fill out all other rows. That is exactly the
(Chandrasekhar algorithm) simplification provided by
the assumption of an underlying state-space model.
Therefore, we are led to the following square-root ver-
sion of the Chandrasekhar equations [8]:

1/2 1/2 -
(Rip) ™ 0| | (R)T HL ]ei 1)
I<i+1 L,‘+1 I{i FL:

We may note that the square-root form was first de-
rived in [8], though by a very different method. We
also remark that ©; can be implemented as a sequence
of elementary (hyperbolic and Givens) rotations and
hence it is possible to carry out the Chandrasekhar re-
cursions in scalar steps [9]. Moreover, the derivation
presented here can be easily extended to nonsymmet-
ric Riccati equations of the form [9]:

Py = FP®* + GQU* — K;R;'W;

3. THE SCHUR ALGORITHM AND
SPECTRAL FACTORIZATION

The previous discussion also leads to a simple deriva-
tion of the connection between spectral factorization
and the Schur algorithm. Just observe that in the sta-
tionary case, equation (1) leads to Pp — Py = KoKj.
Hence we can take Lo = Ko and S = I, which
shows that ©; reduces to the form

[ I, —/c,»] (I, — keky) ™% 0
—ki I 0 (I, — ktk;)~*

where {k;} are now pxp contractive matrices, known
as reflection coefficients. In this case, the recursive
algorithm reduces to the celebrated Schur algorithm
for matrix functions analytic and bounded inside the
unit disc [10]. Moreover, these recursions give us the
steady-state values of K; and (Rf)Y/2, which deter-
mine the spectral factor W(z) as noted at the end
of section 1. In fact we can say more. If we expand
W(z) and write

o0
W(z) = (R)Y2 4+ T HF 'K
=1

then the matrix coefficients of this expansion, viz.,
{(R)'/?, HK, HFK, HF?K, ...}, are exactly the
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Figure 1: Lattice filter structure.

steady-state values of the first block-column of G;0;
(as i — oo). This relation is expected since the ob-
servations {vo, Y1, y2 ... } and the normalized in-
novations {vo, v1, Va, ...} are related through the
Cholesky factor of R = LL* [2]:
[ v o .]*:E[VS vi ]*

and the block-columns of £ are given by the first block-
columns of G;©; [1, 7]. Hence, in the steady state (as
n — oo):

[ee]
Yo = (RO 20+ HF "'Kvn_;
i=1
which confirms the fact that the transfer function from
the innovation process {v;} to the output process

{y;} is W(2).
4. CONCLUSION

We showed that the Chandrasekhar recursions follow
by incorporating state-space structure into the Schur
algorithm for structured matrices. We noted the sim-
ple connection to spectral factorization and also re-
marked that the approach of this paper can be ex-
tended to the nonsymmetric Riccati difference equa-
tion.
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