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ABSTRACT 
Using duality arguments from optimization theory, this work develops 
an effective distributed gradient boosting strategy for inference and 
classification by networked clusters of learners. By sharing local dual 
variables with their immediate neighbors through a diffusion learning 
protocol, the clusters are able to match the performance of centralized 
boosting solutions even when the individual clusters only have access 
to partial information about the feature space. 

Index Terms- Gradient boosting, distributed learning, diffusion 
strategy, AdaBoost. 

1. INTRODUCTION AND MOTIVATION 

In statistics and machine learning, ensemble learning is a formidable 
technique that is able to aggregate the recommendations of weak 
classifiers into a more powerful classification structure with enhanced 
predictive abilities [1-4]. One prominent example is the AdaBoost 
algorithm [3,5,6], which has achieved great prominence due to its 
efficient implementation structure, strong performance, and its ability 
to limit over-fitting [1] . It also satisfies a useful optimality property 
in that it can be derived from the minimization of exponential risk 
functions [7]. This connection between exponential risks and Ad
aBoost has motivated useful generalizations of boosting solutions 
using other choices for the risk function . Two of the main generaliza
tions introduced in [8] and [9] are the Gradient Boosting Machine and 
the AnyBoost solution. These works helped solidify the connection 
between boosting techniques and gradient-descent methods from an 
optimization theory perspective. 

In this article, we exploit this connection more broadly and con
sider distributed implementations. Specifically, we show how to 
develop cooperative boosting strategies by exploiting strong duality 
arguments from optimization theory [10,11] and powerful diffusion 
strategies from distributed learning [12, 13]. We examine the im
portant case in which the weak classifiers are not co-located but are 
dispersed, either geographically over space or by design through the 
intentional partitioning of the classifier set. We assume that the classi
fier set is partitioned into smaller groups, where the elements in each 
group may only have access to lower dimensional subspaces of the 
feature space. The groups are also networked by an outer topology 
- see Fig. 1 further ahead. The objective is to endow the dispersed 
groups of classifiers, through localized cooperation, with a distributed 
learning mechanism that ensures that the quality of their predictions is 
as close to what would result from a centralized solution with access 
to the entire feature space. 

One earlier approach to distributed boosting is studied in [14- 16]. 
It is based on learning from subsets of the training data and then com-
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bining the weak classifiers through an aggregation procedure. This 
formulation is different from the approach pursued in this work, which 
is fully decentralized and does not involve fusing information from 
across all classifiers. A second example is the Ivote procedure [17] 
and its distributed version DIvote [18, 19]. These procedures, however, 
do not rely on boosting and their theoretical limits of performance 
have not been analyzed as closely as AdaBoost. While these various 
methods work well in some circumstances, they can still suffer from 
over-fitting or get trapped at local minima. In comparison, this work 
devises truly distributed boosting solutions with performance guaran
tees by relying on strong duality arguments [11,20] and the theory of 
diffusion adaptation [12,13], which allow the algorithms to disperse 
data and computation in a parallel and distributed manner. 

2. GRADIENT BOOSTING ALGORITHM 

In order to prepare for the derivation of the distributed strategy, we 
briefly review the well-known gradient boosting technique [8,9,21] in 
the context of supervised machine learning problems. Thus, consider 
a collection of N data pairs: 

D = {{h1, }'(1)} , {h2 ,}'(2)} , ... , {hN, }'(N)}} (1) 

where hn E JRM are feature vectors and }' (n) represent the class 
variable. In this article, we assume that there are two classes }'(n) E 
{± 1}. A generic classifier, denoted by c(h) , is a transformation that 
maps a feature vector h into a class value, }'(h). Assume we have a 
collection of L weak classifiers: 

C = {Cl (h) , c2(h) , ··· , cL(h)} , (L can be largerthan N) (2) 

We would like to select combination coefficients {a( £)} to construct a 
prediction for the class variable }'( h) by combining the above learners 
into a more powerful classifier: 

L 

;:Y(h) ~ L a(£)cc(h) (3) 
C= 1 

The coefficients {a( e)} are determined by minimizing a surrogate 
risk of the following form 

N 

Jemp(;:Y) ~ ~ L Q ( }'(n) , ;:Y(n») (4) 
n= l 

where the symbol Q( .) denotes a generic loss function , assumed 
convex and first-order differentiable. Some popular choices for 
QU include the exponential loss, quadratic loss, hinge loss, and 
logistic loss [1,2,22]. Gradient boosting provides a solution technique 
by applying a greedy strategy to the minimization of (4) [1,8, 21], 
where one coefficient a(£) and one classifier cc (h) are selected at 
a time. Specifically, assume that by the end of iteration t - 1, we 
have already identified classifiers { c1( h) , .. . , Cf- l ( h)} and weights 
{aO(l) , ... , aO(t - 1)}. Gradient boosting selects the next classifier, 
ct(h) , and its associated weight, aCt) , and enlarges the aggregate 
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prediction from iteration t - 1 as follows: 
t -l 

::y(t) (h) = L o:O (s) c~ (h) +o:(t) ct(h) = ::y(t- l ) (h) +o:(t)ct(h) 
8=1 

In order to determine the optimal choices {cnh) , 0:0 (t)} , the algo
rithm evaluates the negative gradient of the empirical risk (4) and 
selects the classifier and its weight optimally: the index fO is selected 
through (7) and the coefficient o:O(t) through (8). 

Gradient boosting algorithm [8] 

Initialization: choose ::y(O) (n) , n = 1,2, ... , N 
repeat for t = 1, 2, ... ,T: 

( ) __ 8Q(-y(n),::Y(n)) I 
gt n - 8-( ) 

'Y n 'Y(n)='Y(t - l )(n) 
N 

{fo,l'n = argmin L (gt(n) - ;3ce(hn))2 
{e ,f} n= l 

c~(h) = Ceo (h) 
N 

(5) 

(6) 

(7) 

o:O(t) = argmin L Q ( 'Y (n) , ::y(t- l )(hn) + o:c~(hn )) (8) 
0: n = l 

::y(t) (h) = ::y( t -l) (h) + o:O(t)c~(h) (9) 

end 

3. DIFFUSION GRADIENT BOOSTING 

We now derive an effective decentralized strategy for boosting as
suming distributed classifier groups and partial information at the 
groups. We first describe a formulation that involves the centralized 
fusion of predictions from a collection of dispersed learning groups. 
We subsequently apply duality arguments to show that this can be 
transformed into a distributed implementation that relies solely on 
local interactions among the groups. 

3.1. Networked Groups and Partitioning Model 
We consider a scenario in which the L classifiers are divided into K 
groupings. We index the groups by the letter k, with k = 1,2, ... , K . 
We denote the classifiers that are available in group k by: 

Ck = {Ck, 1(h) ,Ck,2 (h) , ... ,Ck,Lk(h)} (10) 

Note that we are attaching a subscript k to the classifiers to indicate 
that these are the ones used by group k. We allow classifiers to 
be repeated across groups. We also assume that each group k may 
have access to only a subset of the feature space for its classification 
decisions. This situation is common. For example, weak classifiers 
are often chosen as shallow decision trees, or simply stumps [1,23]. 
When a number of these weak classifiers is present at a particular 
group k, then this group will be relying on a subset of the feature 
entries. To reflect this fact, for any of the training vectors hn E JRM, 
we shall adopt the notation hk,n E JRMk to refer to the subset of 
the feature vector hn that is used by group k. Again, we allow for 
feature entries to be repeated across groups. Accordingly, when we 
write, for example, Ck, l (hk ,n ), this notation is meant to refer to the 
classi fier Cl (.) that is present in group k and which operates on the 
sub-features of hn that are included in hk,n ' 

We further assume that there is a graph structure that ties the 
groups together, shown in Fig. 1, so that if groups k and k' are con
nected by some edge, then this means that these groups can exchange 
information over this edge. A non-negative scalar ak' ,k is assigned 

to the edge connecting k' to k. These scalars are convex combination 
coefficients and satisfy: 

(11) 

k'ENk 

where Nk denotes the set of neighbors of group k; these are the 
groups that are directly connected to k by edges. If we collect the 
scalars {ak' ,d into a K x K matrix A = [ak' ,k], then the above 
property implies that A is a symmetric matrix, and each column and 
each row of A adds up to one. We say that A is a doubly-stochastic 
matrix. There are many possible choices for such doubly-stochastic 
matrices. One popular choice is the Metropolis rule [12]. 

N data points 

-'I, llh1,l lh1 ,21 

AI, II h2 ,,1 h2,21 .... '. E;OI 
-'I, II h3,' I h3,21 t'3,NI 

Fig. 1. Partitioning of the feature space and network topology. 

3.2. Centralized Processing at the Groups 
In principle, each group k can run its own gradient boosting procedure 
and, after T iterations, come up with its own prediction, one that is 
based on the classifiers in Ck. More broadly, a centrali zed solution 
would seek to determine a global prediction function, ::Y(h) , that 
combines all group classifiers in the following manner: 

K T 

::y(T) (h) ~ L L O:k(t)Ck,t (hk , ) (12) 
k=l t = l 

in terms of some coefficients {O:k(t )} that need to be determined. 
Observe that we are now attaching a subscript k to coefficients arising 
from group k. The main difference in the derivation that follows 
in relation to the gradient boosting derivation from the previous 
section is that we now need to select a total of K classifiers, one 
from each group, for each iteration t, along with their corresponding 
weights. That is, every stage t now involves determining K pairs 
{ck,t (h k,), O:k(t)} for k = 1, 2, .. . , K. 

Assume that by the end of iteration t-l, each group k has already 
identified the optimal classifiers {Ck, l(h) , Ck ,2(h)" ", Ck ,t- l(h)} 
and their combination weights {O:k (I) , o:k (2) , ... , O:k (t - I)}. 
Next, we would like to select the next K classifiers, denoted gener
ically by {ck,t (h)}, and their associated weights {O:k(t )}, for 
k = 1,2, . .. ,K, in order to enlarge the aggregate prediction from 
stage t - 1 by adding to it a term of the following form: 

K 

::y(t) (h) ::y(t-l) (h) + L O:k(t)Ck,t (hk , ) (13) 

k=l 
Observe that the aggregate update now involves the sum of K weak 
classifiers: one from each group k. In order to determine the opti
mal choices {ck,t(h) , O:k (t)} for k = 1,2, ... , K, we evaluate the 
negative gradient of the empirical risk: 

( ) ~ 8QC'Y(n),::Y(n)) I (14) 
gk,t n - - 8::Y(n) 'Y(n)='Y(t - l )(n) 

and set ck,t(h) = Ck,e'k (h), where the optimal index fk' for group k, 
is obtained by solving: 

N 2 

{f%,;3k} = argmin L (9k,t (n) - ;3kCk,e (hk ,n )) (15) 
{l ::;e::;Lkofd n=l 
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Once the {ck ,t (h)} are selected, we then choose the weights {ak(t)} 
for the K groups in order to result in the steepest decline in the value 
of the empirical risk, namely, 

N K 

{ak(t)} = argmin L Q( 'Y(n) , ;:y(t-l)(hn)+ LakCk,t (hk ,n )) 
{e>d n=l k=l 

(16) 
With the {ck, t(h), ak(t)} so detennined, we can rewrite (13) in terms 
of these opti mal choices: 

K 

;:y(t)(h) = ;:y(t-l) (h) + Lak(t)Ck,t (hk , ) (17) 

k=l 
The resulting algorithm is non-distributed; nevertheless, it solves the 
problem of selecting K optimal classifiers and their weights at each 
stage in order to reduce the empirical risk value sequentially. Since 
this implementation requires access to global information from across 
all groups, we shall refer to it as a centrali zed solution. 

3.3. Equivalence via Duality Argument 
Our purpose now is to device a fully-decentralized scheme whereby 
groups rely solely on their local information and on exchanges with 
their immediate group neighbors in order to construct the aggregate 
classifier without the need to access global information. 

For generality, we consider a regularized version of (16), say, 
K 

{ak(t)} = arg min p Lq(ak) + 
{e>d k=l 

; Q ( 'Y (n) , ;:y(t- l )(hn) + ~ akCk,t(hk,n )) (18) 

where p > 0 is a regularization parameter and q( .) is a convex 
regularization function. The key observation is that the objective 
function in (18) has the form of a "cost-of-sum" since the argument 
of Q(.) involves a sum in terms of the unknowns, {ak} . The duality 
argument will show that this "cost-of-sum" form can be transformed 
into an equivalent "sum-of-cost" form, which is particularly amenable 
to distributed implementations [24]. 

We start by introducing, for every n = 1, 2, ... , N, a dummy 
scalar variable z(n) and replace (18) by: 

min 
{z,e>} 

K N 

P L q(ak) + L Q ( 'Y (n) , ;:y(t-l)(hn) + z(n)) 
k=l n=l 

K (19) 

subject to z(n) = L akCk,t (hk ,n ), for n = 1, 2, ... ,N 
k=l 

It is easy to see that problem (19) is a standard convex optimization 
problem and that, under the linear equality constraints, strong duality 
holds [11]. The corresponding dual function is given by: 

N 

D(A) ~ L 1r!J Q Hn) , ;:y( t-l) (hn)+z(n)) + A(n)z(n)} 
n = l 

+ p ~~~f {q(ak)- ;A(n)Ck/hk ,n ) ak } (20) 

where the primal variables {ak(t , A), zO (n, A)} and the dual variable 
A are related via: 

{zO (n , A) ,ak(t , A)} = argmin£(z,a,A) (21) 
{z,e>} 

It will be shown later that the primal variables can be recovered in a 
distributed manner. We can now call upon the concept of conjugate 
functions. For any function r( x) of a scalar variable x, the conjugate 

function is denoted by r * (v) [11], where v is a scalar argument, 
and defined as r*(v) = sUPx (vx - r(x)). For many common 
regularization forms, closed form expressions exist for q* (v) - see 
[24, 25]. The first minimization in (20) can also be expressed in 
closed form in important cases, such as when the loss function Q(.) 
is chosen as the exponential loss, the square loss, or the logit loss. For 
now, we denote the minimum value of the first term generically by: 

QO(n , A) ~ -1r!) {Q ( 'Y(n), ;:y(t- l )(hn) + z (n)) + A(n)z (n)} 

(22) 
so that the expression (20) can be written as: 

K 

D(A) = - L Jk(A) , (23) 
k=l 

Jk(A) ~ pq* (; A(n)Ck;(hk ,n) ) + ~; QO(n , A) (24) 

Therefore, the problem of determining the optimal dual variable, A 0 , 

can be equivalently stated as 
K 

mln L Jk(A) ===? AO (25) 
k=l 

The "sum-of-costs" formulation (25) is convenient because it admits 
efficient distributed solutions of the consensus or diffusion type [12, 
13], meaning that each group k is now able to estimate A ° on its own 
by interacting solely with its neighbors. We shall denote these local 
estimates by Ak' with a subscript k to indicate the group index. 

3.4. Diffusion Learning 

In the diffusion implementation, at every stage t and starting from 
some initial value, each group k repeats the following computations 
a couple of times until its estimate for the A, denoted by Ak ,i at time 
i, converges close enough to a limiting value, denoted by Ak; this 
limiting value is a local estimate for the dual variable A 0 . 

Diffusion strategy [13] (run by every group k) 

repeat for i = 1,2, ... ,I: 
¢k,i = Ak,i-l - /-l"V:.Jk(Ak,i-l ) 
Ak ,; = l:.k' ENk ak'k¢k',; 

end 
set Ak = Ak,I 

In the above adapt-then-combine (ATC) diffusion strategy [12, 13,26], 
for every i, agent k first moves along the negative direction of its 
cost gradient to generate the intermediate estimate ¢k,;, followed 
by a consultation step where it combines the intermediate estimates 
{¢k' ,;} from its neighbors to obtain Ak,; . We shall represent the 
diffusion strategy more compactly by writing 

Ak = diffusion {Jk(A) ,Nk, I} (26) 

where Nk denotes the neighborhood of group k , and I denotes the 
number of iterations to be used; this parameter is set by the designer. 
All groups apply the diffusion strategy simultaneously. Consequently, 
every group k will end up with a local version, Ak, for the global 
dual variable A 0 • In this way, each group k can now compute a local 
version for zO (n) and its optimal coefficient ak(t) by solving: 

zk (n) = argmin {Q ( 'Y(n) ,;:Ykt- 1)(hn) + z ) + Ak(n) z } (27) 
z 
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We now explain how the prediction variables can be estimated for 
arbitrary features, h. Indeed, note that after completing T stages of 
the diffusion strategy to learn the dual variable, each agent k will 
have available its optimal coefficients ak(t) and classifier selections 
Ck,t(') ' During testing, when a new feature vector h is received, each 
agent k is able to use this local information to evaluate: 

b~T ) (h) ~ "L,;=l ak(t)ck,t(hk,) (29) 

Then, from the general form (12) we know that the overall prediction 
variable is the aggregate sum of these individual decision variables. 
When A is doubly-stochastic, this sum can be evaluated in a dis
tributed manner by each agent k running the traditional consensus 
iteration [13,27] to combine repeatedly local values. 

Local averaging (run by every group k) 

Initialization : start from s~O)(h) = b~T) (h) 
repeat for j = 1, 2, . .. ,J: 

s~)(h) = L ak'k s~-l\h) 

end 

set 9f>Ch) = K . s~J>Ch) 

We represent the above averaging procedure compactly by writing: 

9f>Ch) = K . average {bkT) (h) ,Nk, J} (30) 

In summary, the resulting distributed algorithm is the following. 

Diffusion gradient boosting algorithm 

Initialization: choose 9kO) (n) , for n = 1 ... N, k = 1 ... K 

repeat for t = 1, 2, ... , T: 

for every agent (in parallel) k = 1,2, .. . , K: 

aQ(-Y,9) I 9k,t(n) = 
a9(n) ~_~(t - 1)() 

'Y - 'Yk n 

N 2 

{fk ,,6k} = argmin L (9k ,t (n) -,6k ck,c(hk,n)) 
{l ::;C::; Lk ,J3d n = l 

Ck,t(h) = Ck ,C'k (h) 

Jk(A) = expression (23) 

Ak = diffusion {Jk(A) ,Nk, I} 

(31) 

(32) 

(33) 

(34) 

(35) 

o {(~ Ak(n)ck t(hk n) ) } ak(t) = arg",:in q(ak)- ~ ; ' ak (36) 

bkt )(h) = bkt -l) (h) + ak(t)ck,t(h) (37) 

end 
end 

9kt ) (h) K . average {bkt) (h) ,Nk' J} (38) 

4. SIMULATION ON SPECIAL LOSS FUNCTIONS 

In this section, we consider the exponential loss function, Q( 'Y, 9) = 

e -'Y"i , which is associated with AdaBoost learning. In this case, by 
exploiting the fact that 'Y( n) , Ck,C (h) E {± I}, it can be verified that 

aQ(-y(n) ,9(n)) I - () () (39) a-( ) - 'Y n Tk t n , 'Y n ~( ) _~(t - l ) ( ) , 
'Y n - "I k n 

(40) 

N 

flo = arg min L Tk ,t (n) IT [ck,c(hk,n) i= 'Y(n)] (41) 
l ::;C::; Lk n = l 

where IT[x] denotes the indicator function ; it is equal to one when its 
argument is true and zero otherwise. Result (41) indicates that flo is 
selected as the optimal classifier that results in the smallest sum of 
weights Tk ,t(n) over the misclassified data. Next, we evaluate the 
function QO(n, A) defined by (22) and find: 

Qk ,t (n , A) = 'Y(n)A(n) [In ('Y;:,~~))) - 1] (42) 

Assume we employ elastic-net regularization: 

1 2 * 11 12 q(x) = 81xl + 21xl -¢=} q (v) = 2 To(v) (43) 

where To(v) represents the soft-thresholding operator To(v) = 
sgn(v) . max(lvl - 8, 0). It then follows from (23) and (28) that 

N 

ak(t) = To G L Ak,t(n)ck ,t(hk ,. )) (44) 
n = l 

-Ct)( ) _-Ct-l) ( ) _ ( )1 ( 'Y(n)Ak ,t (n)) 'Yk n - 'Yk n 'Y n n ( ) Tk ,t n 
(45) 

We can use this update to derive an alternative expression for 
the weight Tk ,t(n) in terms of the local dual variable Ak,t(n) by 
Tk,t+l(n) = 'Y(n)Ak,t(n) It is useful to assign Ak,t- l(n) as a 
starting point for Ak,t (n) in the diffusion update (26). 

We now compare the performance of the diffusion Adaboost 
implementation with elastic-net regularization against the standard 
(centralized) Adaboost algorithm [8]. The set of weak classifiers is 
chosen as 

(46) 

For the diffusion AdaBoost setting, we assigned 10 groups, which are 
connected through a random doubly stochastic matrix. Each group 
is in charge of one-tenth of the feature entries and the corresponding 
weak classifiers. The test data is obtained from the UBSVM website l . 

We use the Reuters Corpus Volume I (RCV 1) dataset. The agent 
setting is the same and the parameter setting is p = 0.01 , 8 = 0.2, 
and J.l = 1 X 10- 6 

Diffusion AdaBooost applied to RCV1 dataset 
O.95~-~-~-~-~-~--~-~-~ 

..... Diffusion Ada Boost (distributed) 

....... Standard AdaBoost (centralized) [8] 
- - - Each agent (non-cooperative mode) 

Fig. 2. Evolution of the performance curves. 

One observation stands out from these results. The dotted lines 
in the figure confirm that if the individual groups were to rely solely 
on their classifiers to solve the inference task, then their performance 
will be poor. However, once they start cooperating locally and sharing 
local information, the network of dispersed groups is able to match 
the performance of the centralized Adaboost solution. 
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