
lEUk,iUk,i > O. The regressors {uk,d are assumed to have 
zero mean and to be temporally white and spatially indepen­
dent. The data {dk( i) , uk,d are assumed to be related via the 
linear regression model: 

(1) 

where wZ E lR M k X 1 is the target vector to be estimated by 
agent k. The variable Vk~i) E lR is a zero-mean white-noise 
process with variance lEvk (i) = a~ k and assumed to be spa­
tially independent. We further ass~me that the random pro­
cesses Uk,i and ve(j) are spatially and temporally indepen­
dent for any k, f! , i, and j. We assume that each entry of wZ 
is determined by a grand target vector WO E lRM X\ i.e., the 
relation between wZ and WO can be described by 

wZ = DkW o 

where Dk is a matrix of size Mk x M and defined as 

if wZ(s) +-- wO(m) 
otherwise 

(2) 

(3) 

The notation x +-- y denotes that the value of y is assigned to 
x . We are therefore considering a distributed inference prob­
lem where each agent has partial information about a grand 
target vector, i.e., the data at each agent is influenced by only 
some entries of wo. Observe that the size Mk of the vector 
wZ is allowed to change with the node index, k, so that some 
agents may be influenced by more entries than other agents. 

Now, given a network topology, two neighboring agents 
{k, f! } may share one or more common target entries, e.g., 
there can exist some index m E {l , ... ,M} such that 

wZ(s) +-- wO(m), w'l(s') +-- wO(m), f! E Nk \ {k} (4) 

where N k is the neighborhood of agent k. We are therefore 
motivated to consider the following constrained optimization 
problem for each agent k: 

min ß 1 2 
Jk(Wk) = 2lE1 dk(i) - Uk,iWkl 

subject to Wk(S) = we(s'), f! E Nk \ {k}, 
s E {l , ... ,Mk}, Si E {I, ... ,Me} (5) 

The indices sand Si in (5) refer only to the common entries in 
wZ and wf. We provide an example in Fig. 1 to illustrate the 
setting defined in (5). For example, agents # 1 and # 2 share 
the common target entry wO(2); it is the leading element in 
the target vector for agent # 2 and the trailing element in the 
target vector for agent # 1. Observe that agents can share tar­
get entries even if they are not neighbors, as is the case with 
agents # 1 and # 3; they both share entry wO(l). However, 
the constraints for the common target entries can only exist 
between neighboring agents. For convenience and for later 
use, we collect the constraints for each agent k into a con­
straint set § k: 

§ ~ {( f! 1) 1 Wk(S) = we(s'),f! E Nk \ {k} } 
k , s, s S E{l , ... ,Mk}, S' E {l, ... ,Me} 

(6) 

wO= [::ml D 1 = [~ ~ ~l D 2 = [~ ~ ~] 
Fig. 1. An example to ilIustrate distributed inference under partial 
information exchange. 

3. PENALTY-BASED LEARNING 

One way to solve problem (5) is to reformulate it using 
penalty functions. Specifically, instead of solving (5), we 
consider the penalized version: 

min 
W k 

(7) 

where the notation wk ~ col{ We; f! E Nk } aggregates all 
unknowns in the neighborhood Nk and Pk (wk) is a quadratic 
penalty function used to penalize agent k when any constraint 
Wk(S) = we(s') is violated, i.e., 

Pk(Wk) ~ L Pk(f!, S, Si) . [Wk(S) - we(s,)]2 (8) 

(e,s ,S')ESk 

where Pk(f!, S, Si) is a positive penalty parameter used to con­
trol the punishment level of violating the constraint Wk (s) = 
we(s'). Other choices for the penalty function are possible. 
It is sufficient for our purposes in this artic\e to illustrate the 
main construction and results using (8). 

3.1. Entry-Wise Diffusion Implementation 

Following the approach from [18], the optimization problem 
(7) can be solved in two incremental steps: we first adapt with 
respect to J k (Wk) and then adapt with respect to Pk (w ). For 
this purpose, we start by noting that the gradient vector of 
J k ( W k) with respect to w k is given by 

(9) 

where Tdu,k = lEdk(i)uL. When the gradient of Jk(Wk) is 
unavailable, we can approximate it by using the instantaneous 
approximations Tdu,k ~ dk(i)uL and Ru,k ~ ULUk,;: 

- T 'V wIJk(Wk) = Uk,i[Uk,iWk - dk(i )] (10) 

By doing so, we arrive at the adapt-then-penalize (ATP) dif­
fusion strategy: 

where '!/Jf ~ col {'!/Je ,i; f! E Nk } . By differentiating the 
penalty function Pk ('!/Jf) with respect to Wb it can be verified 
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whereBi �~� AI(I - MRi )AI andg �~� AIM.ltwasshown 
in [11] that the tradition al ATC and CTA diffusion algorithms 
have a network error recursion of the same general form as 
(37), except that now we have one critical difference. Expres­
sion (37) is more general and allows agents to have different 
sizes for their target vectors {wZ}. Furthermore, the matrices 
Al and A2 now reflect refined connections: two connected 
agents only share a subset of their entries, which can be a sin­
gle entry in the extreme case. Therefore, cooperation between 
agents is limited to entry-wise exchanges, as opposed to full 
vector exchanges in traditional implementations. Following 
similar arguments to those in [11], we can derive conditions 
on the step-size parameters to ensure mean-square conver­
gence and stability. Proofs are omitted for brevity. For any 
nonnegative symmetric matrix �~�,� we let a = �v�e�c�(�~�)� and use 
the compact notation Ilxll ; to refer to the squared weighted 
quantity x �T�~ �x �.� 

Theorem 1. (Mean-square-error stability) For sufficiently 
small step step-sizes, i.e., for /Lk < /Lo for so me small enough 
/Lo, it holds that IEWi ---+ 0, such that the estimates are asymp­
totically unbiased. Moreover, the weighted error variance 
satisfies the recursion: 

(38) 

where F �~� IE(B; 181 Bi) with the Kronecker product 181, y �~� 
gSgT, and 

s �~� diag{ a;,l Ru,l, ... ,a;,l Ru,N } 

5. SIMULATIONS 

(39) 

D 

We consider a network with N = 10 agents. Each agent k 
is estimating a target vector wZ, which is a subvector of the 
grand target vector WO of size M = 10. For each agent k, 
we assume that Ru,k is diagonal and its diagonal entries are 
determined by a grand diagonal covariance matrix Ru, i.e., 

Ru,k = DkRuDk (40) 

Figure 2 shows the entries of the grand target vector wo, the 
diagonal entries of the grand covariance matrix Ru, and the 
noise variance {a; k} at the agents. The network topology 
and the relations �b�~�t�w�e�e�n� {wk} and WO are shown in Fig. 3. 
We set the step-size to /Lk = /L = 0.005 and the penalty 
parameter to Pk( JI., s , s') = P = 30. 

In Fig. 4, we simulate the learning curves of instantaneous 
network mean-square deviation (MSD), which is defined as 

N 

MSDi �~� �~� L IEll wZ - Wk ,i11 2 

k= l 

(41) 

We observe that both diffusion ATP and PTA algorithms 
exhibit better steady-state MSD performance than the non­
cooperative case without imposing constraints and penalties. 
To examine the individual performance, we compare the 
steady-state individual MSD for each agent in Fig. 5. It is 
seen that all agents benefit from exchange of information with 
neighbors. The difference between diffusion ATP and PTA 
algorithms is negligible in the figures. 
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Fig.2. Entries ofwo, Ru, and noise variance {a; ,k} used in 
the simulations. 
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Fig. 3. Network topology and target vectors {wO. 
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