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ABSTRACT 

In many scenarios of interest, agents may only have access 
to partial information about an unknown model or target vec­
tor. Each agent may be sensing only a subset of the entries 
of a global target vector, and the number of these entries can 
be different across the agents. If each of the agents were to 
solve an inference task independently ofthe other agents, then 
they would not benefit from neighboring agents that may be 
sensing similar entries. This work develops cooperative dis­
tributed techniques that enable agents to cooperate even when 
their interactions are limited to exchanging estimates of se­
lect few entries. In the proposed strategies, agents are only 
required to share estimates of their common entries, wh ich 
results in a significant reduction in communication overhead. 
Simulations show that the proposed approach improves both 
the performance of individual agents and the entire network 
through cooperation. 

Index Terms- Adaptive network, constrained optimiza­
tion, penalty function, diffusion strategy, distributed estima­
tion. 

1. INTRODUCTION AND RELATED WORK 

Adaptive networks enable agents to share information and to 
solve distributed optimization and inference tasks in an on­
line and decentralized manner. In most prior works, agents 
are assumed to have a conunon minimizer and cooperate to 
estimate it by using effective distributed strategies such as the 
consensus strategy (e.g., [1-8]) or the diffusion strategy (e.g., 
[9-12]). When the agents do not share a minimizer, it was 
shown in [9,10, l3, 14] that the network converges to a Pareto 
optimal solution. When it is desired instead that agents, or 
clusters of agents within the network, should converge to their 
respective models, rather than the Pareto solution, then multi­
task diffusion strategies become useful and can be used to 
attain this objective [15,16]. 

In these earlier contributions, it is generally assumed that 
the target vector for each agent has the same size and, more­
over, that the agents sense data that is affected by all entries 
of their target vectors. In this work, we relax these condi­
tions and consider a broader scenario where individual agents 
sense only a subset of the entries of the global target vec­
tor, and where different agents can sense subsets of different 
sizes. This formulation allows us to model the important sit­
uation in which agents may only have access to partial infor-
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mation about an unknown model or target vector. If each of 
the agents were to solve an inference task independently of 
the other agents, then they would not benefit from coopera­
tion with neighboring agents that may be sensing conunon en­
tries. This work develops cooperative distributed techniques 
that enable agents to cooperate even when their interactions 
are limited to exchanging estimates of select few entries. To 
attain this objective, we allow for some entries of the global 
target vector to be observable by more than one agent so that 
cooperation across the network is justified. 

Our approach will be based on formulating a constrained 
optimization problem for recovering partial entries of the 
global target vector. However, rather than solve this prob­
lem directly, we will introduce a penalized version using a 
quadratic term to penalize the violation of the constraints. 
We will then develop a diffusion learning solution to solve 
the optimization problem in a distributed manner by relying 
on two incremental steps. In the adaptation step, agents de­
scend along the negative direction of the gradients of their 
costs. And in the penalty step, they descend along the neg­
ative direction of the gradients of their penalties. When the 
exact gradient information is unavailable, the observed data 
is used to cOlnpute instantaneous approximations for the gra­
dient vectors. In the penalty step, agents will only share the 
conunon entries of their estimates with neighbors to reduce 
the communication costs. The order of executing the two 
incremental steps results in the Adapt-then-Penalize (ATP) or 
Penalize-then-Adapt (PTA) diffusion strategies. 

We remark that this work considers a more general sce­
nario than the partial diffusion formulation proposed in [17]. 
There, all agents sense data driven by the same target vector, 
cooperate to estimate this target vector, and exchange only 
part of their entries. In our formulation , each agent will be 
sensing data driven by different local target vectors and these 
can be of different sizes. In this way, agents are able to co­
operate even if their target vectors are only partially common. 
We then show that sufficiently small step-sizes ensure mean 
and mean-square stability. We illustrate the results by means 
of computer simulations. 

Notation: We use lowercase letters to denote vectors and 
scalars, uppercase letters for matrices, plain letters for deter­
ministic variables, and boldface letters for random variables. 

2. PROBLEM FORMULATION 

At each time instant i ;::: 0, each agent k is assumed to have 
access to a scalar measurement d k (i) E lR and a regres­
sion vector Uk ,i E lR1xMk with covariance matrix R u, k = 
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lEUk,iUk ,i > O. The regressors {uk ,d are assumed to have 
zero mean and to be temporally white and spatially indepen­
dent. The data {dk( i) , uk ,d are assumed to be related via the 
linear regression model: 

(1) 

where wZ E lR M k X 1 is the target vector to be estimated by 
agent k. The variable Vk~i) E lR is a zero-mean white-noise 
process with variance lEv k (i) = a~ k and assumed to be spa­
tially independent. We further ass~me that the random pro­
cesses Uk ,i and ve(j) are spatially and temporally indepen­
dent for any k, f! , i, and j. We assume that each entry of wZ 
is determined by a grand target vector WO E lRM X\ i.e., the 
relation between wZ and WO can be described by 

wZ = DkW o 

where Dk is a matrix of size Mk x M and defined as 

if wZ(s) +-- wO(m) 
otherwise 

(2) 

(3) 

The notation x +-- y denotes that the value of y is assigned to 
x . We are therefore considering a distributed inference prob­
lem where each agent has partial information about a grand 
target vector, i.e., the data at each agent is influenced by only 
some entries of wo. Observe that the size Mk of the vector 
wZ is allowed to change with the node index, k, so that some 
agents may be influenced by more entries than other agents. 

Now, given a network topology, two neighboring agents 
{k, f! } may share one or more common target entries, e.g., 
there can exist some index m E {l , ... , M} such that 

wZ(s) +-- wO(m) , w'l(s') +-- wO(m), f! E Nk \ {k} (4) 

where N k is the neighborhood of agent k. We are therefore 
motivated to consider the following constrained optimization 
problem for each agent k: 

min ß 1 2 
Jk(Wk) = 2lE1 dk(i) - Uk ,iWk l 

subject to Wk(S) = we(s'), f! E Nk \ {k}, 
s E {l , ... ,Mk}, Si E {I, ... ,Me} (5) 

The indices sand Si in (5) refer only to the common entries in 
wZ and wf. We provide an example in Fig. 1 to illustrate the 
setting defined in (5). For example, agents # 1 and # 2 share 
the common target entry wO(2); it is the leading element in 
the target vector for agent # 2 and the trailing element in the 
target vector for agent # 1. Observe that agents can share tar­
get entries even if they are not neighbors, as is the case with 
agents # 1 and # 3; they both share entry wO(l). However, 
the constraints for the common target entries can only exist 
between neighboring agents. For convenience and for later 
use, we collect the constraints for each agent k into a con­
straint set § k: 

§ ~ {( f! 1) 1 Wk(S) = we(s'), f! E Nk \ {k} } 
k , s, s S E{l , ... ,Mk}, S' E {l, ... ,Me} 

(6) 

wO= [::ml D 1 = [~ ~ ~l D 2 = [~ ~ ~] 
Fig. 1. An example to ilIustrate distributed inference under partial 
information exchange. 

3. PENALTY-BASED LEARNING 

One way to solve problem (5) is to reformulate it using 
penalty functions. Specifically, instead of solving (5), we 
consider the penalized version: 

min 
W k 

(7) 

where the notation wk ~ col{ We; f! E N k } aggregates all 
unknowns in the neighborhood Nk and Pk (wk) is a quadratic 
penalty function used to penalize agent k when any constraint 
Wk(S) = we(s') is violated, i.e., 

Pk(Wk) ~ L Pk( f!, S, Si) . [Wk(S) - we(s,) ]2 (8) 

(e,s ,S')ESk 

where Pk( f!, S, Si) is a positive penalty parameter used to con­
trol the punishment level of violating the constraint Wk (s) = 
we(s'). Other choices for the penalty function are possible. 
It is sufficient for our purposes in this artic\e to illustrate the 
main construction and results using (8). 

3.1. Entry-Wise Diffusion Implementation 

Following the approach from [18], the optimization problem 
(7) can be solved in two incremental steps: we first adapt with 
respect to J k (Wk) and then adapt with respect to Pk (w ). For 
this purpose, we start by noting that the gradient vector of 
J k ( W k) with respect to w k is given by 

(9) 

where Tdu ,k = lEdk(i)uL. When the gradient of Jk(Wk) is 
unavailable, we can approximate it by using the instantaneous 
approximations Tdu ,k ~ dk(i)uL and Ru,k ~ ULUk ,;: 

- T 'V wIJk(Wk) = Uk ,i[Uk ,iWk - dk(i )] (10) 

By doing so, we arrive at the adapt-then-penalize (ATP) dif­
fusion strategy: 

where '!/Jf ~ col {'!/Je ,i; f! E Nk } . By differentiating the 
penalty function Pk ('!/Jf) with respect to Wb it can be verified 
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that step (12) can be rewritten as 

Wk,i = L AIk 'l/Jf,i 
fENk 

(13) 

where Afk is the Mf x Mk matrix with entries defined by 

A ( Si s) = {2J-lkPk(e, S, SI) , if (e, s,sl) E §,k 
fk , 0, otherwise 

for k -=I- e, and 

Akk = diag{l - L 2J-lkPk(e, 1, Si) , 
(f,l,s')E§k 

(14) 

... ,1 - L 2J-lkPk(e, M k, SI)} (15) 

(f,Mk,S')E§k 

Note that 

(16) 

where ] denotes the vector with all one entries. Observe 
that the matrix Afk defines the combination weights between 
agent k and the conunon entries with agent e from its neigh­
borhood; we assume the step-sizes {J-lk} are sufficiently small 
such that the diagonal entries in {Akk } are non negative so 
that A = [Afkl is a left-stochastic matrix. It turns out that the 
particular forms (14) and (15) are not critical. It is sufficient 
to select an arbitrary left-stochastic matrix A as long as the 
zero-structure of its block components {Afk} and property 
(16) are satisfied. We can also switch the order of the incre­
mental steps in (11 )-( 12) and arrive at the penalize-then-adapt 
(PTA) diffusion strategy: 

(17) 
(PTA) fEN k { 

'l/Jk ,i = L AIkWf,i-1 

Wk ,i = 'l/Jk ,i + J-lkUk, i[dk( i ) - uk,i'I/Jk,il (18) 

We remark that in the penalty steps (13) and (l7) , agents are 
only required to exchange a subset of the entries of their iter­
ates with their neighboring agents, namely, those entries that 
define the constraints. This property reduces communication 
overhead, compared with traditional diffusion ATC and CTA 
algorithms in [10]. The ATP and PTA formulations (11)-(13) 
and (l7)-(18) define a useful class of distributed strategies 
that include other important cases as special instances. For 
example, if for each agent k we set Dk = IM in (2) and ex­
tend the constraint set §,k to cover all possible entries sand Si, 
we will arrive at the group diffusion LMS algorithm proposed 
in [19] for agents to assign different combination weights to 
different entries. If we further set Afk = afkI, we will get the 
traditional diffusion LMS algorithms from [lO]. 

4. PERFORMANCE ANALYSIS 

We consider the ATP diffusion strategy (11)-(13). We can 
rewrite the adaptation step in (11) as 

'l/Jk ,i = Wk ,i- l + J-lkULuk ,i (W'k - Wk ,i- d + J-lkULvk(i) 
(19) 

where we used the linear model (1). Collecting the iterates 
{'l/Jk,d and {wk ,d from the across the network at time i 
into the aggregate vectors 'l/Ji = COI{'l/JI ,i, ... , 'l/JN,d and 
Wi = COI{WI ,i , ... ,wN,d, we find that these network vec­
tors evolve according to the dynamics: 

where 

'l/J i = Wi-l + MRi (w~ - Wi- I) + MSi 

Wi = AT'l/Ji 

M ~ diag{J-lIIM 1 , ···, J-lNIM N } 

R i ~ diag{ Ui, iUI ,i, ' .. , U1,iUN,d 

0 " l{ ° O} 'T"l 0 W* = co WI""'WN = vW 

(20) 

(21) 

(22) 

(23) 

(24) 

Similarly, the network recursion for PTA diffusion is given by 

'l/Ji = AT Wi- l (26) 

Wi = 'l/Ji + MRi (w~ - 'l/Ji ) + MSi (27) 

We can capture the dynamics of both algorithms in a single 
unified model by introducing intermediate iterates <Pk ,i and 
matrices {Al, A2 } and then writing: 

<Pi = Ai Wi- l (28) 

'l/Ji = <Pi + MRi (w~ - <Pi ) + MSi (29) 

Wi = AI 'l/Ji (30) 

The PTA case corresponds to the choice Al = A and A 2 = I 
while the ATP case corresponds to Al = I and A 2 = A. To 
continue, we note the following useful properties: 

A 2A I = A, ATV = V , Aiv = V , AIv = V , AT] = ] 
(31) 

From (24) and (28) we can write 

w~ - <Pi = Vw o - Ai Wi- l = Ai (w~ - Wi- l) (32) 

and, similarly, 

Therefore, we arrive at the network error recursions: 

- T -
<Pi = Al Wi- l 

'l/Ji = <Pi - MRi <Pi - MSi 
- T -
Wi = A 2 'I/Ji 

(33) 

(34) 

(35) 

(36) 

where ~i ~ w~ - <Pi and similarly for the other error vectors. 
Combining (34)-(36) we conclude that the error vector Wi 
evolves according to the recursion: 

(37) 
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whereBi ~ AI(I- MRi)AI andg ~ AIM.ltwasshown 
in [11] that the tradition al ATC and CTA diffusion algorithms 
have a network error recursion of the same general form as 
(37), except that now we have one critical difference. Expres­
sion (37) is more general and allows agents to have different 
sizes for their target vectors {wZ}. Furthermore, the matrices 
Al and A 2 now reflect refined connections: two connected 
agents only share a subset of their entries, which can be a sin­
gle entry in the extreme case. Therefore, cooperation between 
agents is limited to entry-wise exchanges, as opposed to full 
vector exchanges in traditional implementations. Following 
similar arguments to those in [11], we can derive conditions 
on the step-size parameters to ensure mean-square conver­
gence and stability. Proofs are omitted for brevity. For any 
nonnegative symmetric matrix ~, we let a = vec(~) and use 
the compact notation Ilxll ; to refer to the squared weighted 
quantity x T~x . 

Theorem 1. (Mean-square-error stability) For sufficiently 
small step step-sizes, i.e. , for /Lk < /Lo for so me small enough 
/Lo, it holds that IEWi ---+ 0, such that the estimates are asymp­
totically unbiased. Moreover, the weighted error variance 
satisfies the recursion: 

(38) 

where F ~ IE(B; 181 Bi) with the Kronecker product 181, y ~ 
gSgT, and 

s ~ diag{ a;,l R u,l, ... ,a;,l Ru ,N } 

5. SIMULATIONS 

(39) 

D 

We consider a network with N = 10 agents. Each agent k 
is estimating a target vector wZ, which is a subvector of the 
grand target vector WO of size M = 10. For each agent k, 
we assume that Ru,k is diagonal and its diagonal entries are 
determined by a grand diagonal covariance matrix Ru, i.e., 

R u,k = DkRuDk (40) 

Figure 2 shows the entries of the grand target vector wo, the 
diagonal entries of the grand covariance matrix R u, and the 
noise variance {a; k} at the agents. The network topology 
and the relations b~tween {wk} and WO are shown in Fig. 3. 
We set the step-size to /Lk = /L = 0.005 and the penalty 
parameter to Pk( JI., s , s') = P = 30. 

In Fig. 4, we simulate the learning curves of instantaneous 
network mean-square deviation (MSD), which is defined as 

N 

MSDi ~ ~ L IEll wZ - Wk ,i11 2 

k = l 

(41) 

We observe that both diffusion ATP and PTA algorithms 
exhibit better steady-state MSD performance than the non­
cooperative case without imposing constraints and penalties. 
To examine the individual performance, we compare the 
steady-state individual MSD for each agent in Fig. 5. It is 
seen that all agents benefit from exchange of information with 
neighbors. The difference between diffusion ATP and PTA 
algorithms is negligible in the figures. 
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