
An Optimal Strategy for Cooperative Spectrum
Sensing in Cognitive Radio Networks

Zhi Quan†, Shuguang Cui‡, and Ali H. Sayed†
†Electrical Engineering Department, University of California, Los Angeles, California 90095

Emails: {quan, sayed}@ee.ucla.edu
‡Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843

Email: {cui}@ece.tamu.edu

Abstract— Spectrum sensing is a key enabling functionality in
cognitive radio (CR) networks, where the CRs act as secondary
users that opportunistically access free frequency bands. Due to
the effects of channel fading, individual CRs may not be able
to reliably detect the existence of a primary radio, who is a
licensed user for the particular band. In this paper, we present
optimal cooperation strategies for spectrum sensing to combat the
effects of destructive channels and malfunctioning devices. Our
approach conducts spectrum sensing based on the linear com-
bination of local test statistics from individual secondary users.
We propose two optimization schemes to control the combining
weights, and compare their performance. Our first approach is
to optimize the probability distribution function of the global test
statistics at the fusion center. For the second scheme, we maximize
the global detection sensitivity under constraints on the false
alarm probability. Simulation results illustrate the significant
cooperative gain achieved by the proposed strategies.

I. INTRODUCTION

Cognitive radios [1] have emerged as a potential technology
to revolutionize spectrum utilization. According to the Federal
Communications Commission (FCC), cognitive radios are
defined as radio systems that continuously perform spectrum
sensing, dynamically identify unused spectrum, and then oper-
ate in those spectrum holes where the licensed (primary) radio
systems are idle. In this way, spectrum utilization efficiency is
dramatically enhanced. Spectrum sensing should also monitor
for the activation of primary users in order for the secondary
users to stop their transmission and vacate spectrum segments.

Spectrum sensing requires the detection of possibly-weak
signals of unknown types with high reliability [2]. However,
such detection performance is usually compromised by fading
channel conditions between the target-under-detection and the
CRs, since it is hard to distinguish between a white spectrum
and a weak signal attenuated by deep fading.

In order to improve the reliability of spectrum sensing, co-
operation among secondary users has been recently proposed
[2] [3]. In such scenarios, a network of cooperative cognitive
radios experiencing different fading states from the target,
would have a better chance of detecting the primary user if
they exchange sensing information among themselves. In other
words, cooperative spectrum sensing can alleviate the problem
of corrupted detection by exploiting spatial diversity, and thus
reduces the probability of interfering with primary users. Since
cooperative sensing is generally coordinated over a control
channel, efficient cooperation schemes should be designed to

reduce bandwidth requirements while maximizing the sensing
reliability.

Although distributed detection has a rich literature (see
[4] and the references therein), the study of cooperative
spectrum sensing for cognitive radios is very limited. In [5],
a simple fusion rule known as the OR logic operation was
used to combine decisions from several secondary users. In
[6], two decision-combining approaches were studied: hard
decision with the AND logic operation and soft decision using
the Neyman-Pearson criteria [4]. It was shown that the soft
decision combination of spectrum sensing results yields gains
over hard decision combining. In [7], the authors exploited the
fact that adding up signals at two secondary users can increase
the signal-to-noise ratio (SNR) and detection reliability if the
received signals are correlated. This cooperative method is
different from those discussed in [5] [6] in that it requires
a wide-band control channel.

In this paper, we present an optimal cooperation strategy
for spectrum sensing, where the final decision is based on a
linear combination of the local test statistics from individual
secondary users. The combining weight for each user’s signal
indicates its contribution to the global decision making. For
example, if a secondary user generates a high-SNR signal and
frequently makes its local decision consistent with the real hy-
pothesis, then it is assigned a larger weighting coefficient. For
those secondary users experiencing deep fading, their weights
are decreased in order to reduce their negative contribution to
the decision fusion. To achieve this goal, we formulate two
optimization schemes to control the combining weights. The
first approach optimizes a particular probability distribution
function (PDF) at the fusion center in order to improve the
detection performance. The second approach maximizes the
probability of detection provided that the probability of false
alarm is constrained. The optimized cooperation schemes im-
prove the sensing reliability while relaxing the harsh require-
ments on the RF front-end sensitivity and signal processing
gain at individual CR nodes. Simulation studies illustrate that
the proposed cooperation schemes achieve superior sensing
performance.

The paper is organized as follows. In Section II, we de-
scribe the system model. Section III introduces the weighting
cooperation for spectrum sensing in cognitive radio networks.
To maximize the sensing performance, we propose two op-
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Fig. 1. A schematic representation of weighting cooperation for spectrum
sensing in cognitive radio networks.

timization schemes based on different criteria in Section IV.
Simulation results illustrating the effectiveness of the proposed
approaches are given in Section V. Section VI concludes the
paper with discussions on extensions of the proposed work.

II. SYSTEM MODEL

We consider a binary hypothesis test for spectrum sensing
at the kth time instant as follows

H0 : y(k) = v(k)
H1 : y(k) = hs(k) + v(k)

where y(k) is the received signal by a secondary user,
s(k) denotes the signal transmitted by the primary user, and
v(k) represents the zero-mean additive white Gaussian noise
(AWGN), i.e., v(k) ∼ CN (0, σ2

v). The scalar h is the channel
gain, which can be assumed to be fixed during a detection
interval. Without loss of generality, v(k), s(k), and h are
assumed to be independent of each other.

As illustrated in Fig. 1, each secondary user calculates its
summary statistics ui over a decision interval of 2n samples,
where 2n is determined from the time-bandwidth product. It
then sends the result to the fusion center through a control
channel. The fusion center computes the global test statistics,
uc from the outputs of the individual secondary users, u =
(u1, u2, . . . , uM )T . In this paper, we assume perfect control
channels, while non-perfect cases will be considered in future
work.

III. COOPERATIVE SPECTRUM SENSING

In this section, we present a cooperative strategy for spec-
trum sensing. Since the transmitted signal of the primary user
is unknown, we adopt energy detection (i.e., radiometry) as
the local sensing rule, which is discussed as follows.

A. Local Sensing

We first consider local spectrum sensing at individual
secondary users. For a sequence of 2n samples over each
detection interval, the quantity

Es =
2n−1∑
k=0

|s(k)|2 (1)

represents the transmitted signal energy. The test statistics of
the i-th secondary user using energy detector are given by

ui =
2n−1∑
k=0

|yi(k)|2 i = 1, 2, . . . ,M (2)

Since ui is the sum of the squares of 2n Gaussian random
variables, it can be shown that ui/σ2

v follows a central chi-
square χ2 distribution with 2n degrees of freedom if H0 is
true; otherwise, it would follow a noncentral χ2 distribution
with 2n degrees of freedom. That is,

ui

σ2
v

∼
{

χ2
2n H0

χ2
2n(ηi) H1

(3)

where ηi = |hi|2Es/σ2
v is the SNR at the i-th secondary

user. According to Lyapunov’s central limit theorem [8], if
the number of samples is large, the test statistics ui are
asymptotically normally distributed with mean

ūi =
{

2nσ2
v H0

(2n + ηi)σ2
v H1

(4)

and variance

σ2
i =

{
4nσ4

v H0

4(n + ηi)σ4
v H1

(5)

This can be compactly represented as ui ∼ N (
ūi, σ

2
i

)
.

Now the decision rule at each secondary user is decided by

ui

H1

�
H0

γi i = 1, 2, . . . ,M (6)

where γi is the corresponding decision threshold. Therefore,
secondary user i will have the following probabilities of false
alarm and detection:

P
(i)
f = Pr(ui > γi|H0) = Q

(
γi − ūi,H0

σi,H0

)
(7)

and

P
(i)
d = Pr(ui > γi|H1) = Q

(
γi − ūi,H1

σi,H1

)
(8)

B. Global Decision

The test statistics {ui} of secondary users are transmitted
through a control channel to the the fusion center. A global
test statistic is calculated linearly as

uc =
M∑
i=1

wiui = wT u (9)

where the weight vector w = (w1, w2, . . . , wM )T satisfies
‖w‖2

2 = 1 and ‖ · ‖2 denotes the Euclidean norm. Since
the {ui}M

i=1 are normal random variables, it follows that
their linear combination is also normal. Consequently, uc is
normally distributed with mean

ūc =
{

2n1T wσ2
v H0

(2n1 + η)T wσ2
v H1

(10)
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where η = (η1, η2, . . . , ηM )T , and variance

σ2
c = E(uc − ūc)

2

= wT E
[
(u − ū) (u − ū)T

]
w (11)

In particular, the variances for different hypotheses are given
by

σ2
c,H0

= wT E
[
(u − ūH0) (u − ūH0)

T |H0

]
w

= wT
(
4nσ4

vI
)
w

= 4nσ4
v (12)

and

σ2
c,H1

= wT E
[
(u − ūH1) (u − ūH1)

T |H1

]
w

= 4σ4
vw

T [nI + diag (η)]w (13)

where I denotes the identity matrix. From (12) and (13), we
observe that the global test statistic uc has different variances
under hypotheses H0 and H1. In particular, we have σ2

c,H1
>

σ2
c,H0

. Moreover, if ηi � 1, we have σ2
c,H1

� σ2
c,H0

.
To make a decision on the presence of the primary signal,

the global quantity uc is compared with a threshold γc. The
performance of spectrum detection at the fusion center can be
evaluated as

P
(c)
f = Q

(
γc − ūc,H0

σc,H0

)
(14)

and

P
(c)
d = Q

(
γc − ūc,H1

σc,H1

)
(15)

IV. PERFORMANCE OPTIMIZATION

In the context of cognitive radio networks, the probabilities
of false alarm and detection have unique implications. Specifi-
cally, 1−P

(c)
d measures the interference from secondary users

to the primary users. On the other hand, P
(c)
f determines the

spectrum efficiency, i.e., a large P
(c)
f usually results in low

spectrum utilization. In this section, we propose two methods
to optimize the performance of spectrum sensing.

A. Optimization of the Probability Distribution Function

From (10) and (13), we observe that the weight vector w
plays an important role in shaping the PDF of the global test
statistic uc. To measure the effect of the PDF on the detection
performance, we introduce a modified deflection coefficient

d2
m =

(ūc,H1 − ūc,H0)
2

σ2
c,H1

=

(
ηT w

)2
4wT [nI + diag (η)]w

(16)

For accurate inference, we would like to maximize d2
m under

the unit norm constraint on the weight vector, i.e.,

maximize d2
m(w) (P1)

st. ‖w‖2
2 = 1

We solve this problem as follows. Since we have nI +
diag (η) � 0, its square root can be represented as

D = [nI + diag (η)]1/2

=




√
n + η1 √

n + η2

. . . √
n + ηM


 (17)

Applying the linear transformation q = Dw gives

d2
m(w) =

qT D−1ηηT D−1q
4qT q

(a)

≤ 1
4
λmax

(
D−1ηηT D−1

)
(18)

where λmax(·) denotes the maximum eigenvalue of the matrix.
Note that (a) follows the Rayleigh Ritz inequality [9] and the
equality is achieved if q = qo, which is the eigenvector of the
positive definite matrix D−1ηηT D−1 corresponding to the
maximum eigenvalue. Therefore, the optimal solution of (P1)
is

w1 = D−1qo/‖D−1qo‖2 (19)

which maximizes the deflection coefficient d2
m. To enforce

ūc,H1 > ūc,H0 , we let wo
1 = sign

(
ηT w1

)
w1. Intuitively,

d2
m implies the SNR of the test statistic uc. As confirmed by

the simulation results below, a larger value of d2
m leads to a

larger probability of detection. This approach performs closely
to the one maximizing P

(c)
d directly (which will be discussed

in the next subsection), but with much less complexity.

B. Maximum Probability of Detection

In this subsection, we design the optimal spectrum sensor by
maximizing the probability of detection for a given probability
of false alarm. Substituting (10) and (12) into (14) leads to

P
(c)
f = Q

(
γc − 2n1T wσ2

v

2σ2
v

√
n

)
= Pt (20)

where
γc = 2σ2

v

[
n1T w +

√
nQ−1 (Pt)

]
(21)

Substituting (10), (13), and (21) into (15), we get

P
(c)
d = Q

(
γ − ηT w

2
√

wT [nI + diag (η)]w

)
(22)

where
γ = γc/σ2

v − 2n1T w = 2
√

nQ−1 (Pt) (23)

Since Q(x) is a non-increasing function with respect to x,
maximizing P

(c)
d is equivalent to

minimize
γ − ηT w

2
√

wT [nI + diag (η)]w
(P2)

st. ‖w‖2
2 = 1

In the following, we will show how to minimize (P2) by
solving the optimum w.
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1) Large Probability of False Alarm: To simplify the op-
timization, we assume a conservative cognitive radio system
where the transmissions are important and Pt ≥ 0.5. This
implies that γ = 2

√
nQ−1(Pt) ≤ 0. Thus, (P2) can be

transformed into the following optimization problem

maximize f(w) =

(
wT η − γ

)2
4wT [nI + diag (η)]w

(P3)

subject to ‖w‖2
2 = 1

whose optimal solution is denoted by wo
3.

Finding the exact solution of (P3) is difficult since f(w)
is not a concave function. Nevertheless, we can bound the
optimal value through some inequalities. Since ηT w > 0 and
γ ≤ 0, we have

(
ηT w − γ

)2 ≥ wT ηηT w. We find that the
optimal value fo of (P3) can be bounded below by

fo ≥ d2
m (wo

1) (24)

On the other hand, an upper bound for fo can be derived as

f(w)
(b)

≤ 1
4n

(
ηT w − γ

)2 (c)

≤ 1
4n

(‖η‖2 − γ)2 (25)

Therefore, we have

d2
m (wo

1) ≤ fo ≤ 1
4n

(‖η‖2 − γ)2 (26)

Let A = 4 [nI + diag (η)], which is positive definite, and
hence, wT Aw > 0 for any w �= 0. We would like to find
a tighter bound for the optimal value fo. Thus, note that for
any α > 0,

f(w) ≥ α ⇐⇒ φα(w) ≤ 0 (27)

where

φα(w) = wT
(
αA − ηηT

)
w + 2γηT w − γ2 (28)

Therefore, if the problem

find w (P4)
subject to φα(w) ≤ 0

‖w‖2
2 = 1

is feasible, then we have fo ≥ α. Conversely, if (P4) is not
feasible, then we can conclude fo < α.

Furthermore, the feasibility problem (P4) can be trans-
formed into a quadratic program

minimize φα(w) (P5)

subject to wT w = 1

Let φo
α denote the optimal value of (P5). If φo

α ≤ 0, then (P4)
is feasible; otherwise, (P4) is infeasible.

To solve problem (P5), we need to derive its Lagrangian
dual problem, which is given by

L(w, ν) = wT
(
αA − ηηT

)
w + 2γηT w − γ2 + ν

(
wT w − 1

)
= wT

(
αA + νI − ηηT

)
w + 2γηT w − γ2 − ν

(29)

and its dual function is given by

g(ν) = inf
w

L(w, ν) (30)

If the matrix αA + νI − ηηT � 0 and η is within the range
of αA + νI − ηηT , then

g(ν) = −γ2ηT
(
αA + νI − ηηT

)†
η − γ2 − ν (31)

where the superscript ‘†’ represents the pseudo-inversion, and
g(ν) = −∞ otherwise.

Consequently, the dual problem can be represented as

minimize ηT
(
αA + νI − ηηT

)†
η + ν/γ2 (P6)

subject to αA + νI − ηηT � 0

which has the optimization variable ν ∈ R. Using Schur
complemention, we can express the dual problem as a semi-
define program (SDP) [10]

minimize β (P7)

subject to
[

αA + νI − ηηT η
ηT β − ν/γ2

]
� 0

with variables (β, ν) ∈ R
2. This problem can be easily solved

for the optimal solution νo and the optimal value βo. It can
be shown that the strong duality holds for problems (P5) and
(P6). Moreover, if φo

α ≤ 0, then

wo
4 = −γ

(
αA + νoI − ηηT

)†
η (32)

is the solution of (P4).
To find the solution of (P3), we can use the bisection search

method to solve a feasibility problem as (P4) at each step.
Start from an interval [L,U ], which can be given by (24) and
(25). We first solve the feasibility problem (P4) at its midpoint
(L + U)/2, to determine whether the optimal value is in the
lower or upper half of the interval. Update the interval and the
optimal value wo

3 = wo
4 accordingly. We then obtain a new

interval containing the optimal value but with half the width
of the initial interval. This is repeated until the width of the
interval is small enough and wo

3 is a good approximation to
the optimal solution.

2) Small Probability of False Alarm: Here we assume that
Pt < 0.5 and P

(c)
d ≥ 0.5. In this case, (P2) has the following

equivalent form

minimize
(
γ − ηT w

)
/w0 (P8)

st. 4wT [nI + diag (η)]w ≤ w2
0

‖w‖2
2 = 1

By introducing a new variable z = w/w0 where w0 > 0, (P8)
can be further transformed into a convex program

minimize γ‖z‖2 − ηT z (P9)

st. 4zT [nI + diag (η)] z ≤ 1

which can be easily solved.
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Fig. 2. The probability distribution functions (PDFs) of the test statistic (u)
under different hypotheses, with M = 3, n = 50, and σ2

v = 1.

V. NUMERICAL RESULTS

In this section, the proposed cooperation schemes are eval-
uated numerically and compared with some existing methods.
Consider M = 3 secondary users in the network, each of
which independently senses the targeted spectrum band. The
channel gain between each secondary user and the target
primary user is generated according to a normal distribution
CN (0, 1). For simplicity, we assume that the transmitted
primary signal has unit power |s(k)|2 = 1. The proposed
schemes are compared with the maximum ratio combining
(MRC) and selection combining (SC, i.e., selecting the user
with maximum SNR) methods.

Figure 2 shows the probability distribution functions of
the test statistics under different hypotheses. The optimized
PDFs are compared with the PDFs of the secondary user with
maximum SNR. It can be observed that the distance between
ūopt.pdf,H0 and ūopt.pdf,H1 is larger than that of ūsc,H0 and
ūsc,H1 . Also, the spread of uopt.pdf,H1 is narrower than that
of usc,H1 , which means that the optimized PDF would result
in more accurate inference. These observations imply that
the PDF optimization scheme outperforms any local spectrum
sensing by individual secondary users.

Figure 3 plots the probability of miss-detection (1 − Pd)
against the probability of false alarm (Pf ). The result shows
that the proposed cooperation schemes lead to much less
interference (much higher probability of detection) to the
primary radio than MRC and SC based approaches. The
cooperation gain is due to the optimization of the PDF of uc

under hypothesis H1. For a practical cognitive radio system
that has a probability of detection greater than or equal to
50%, we observe that the probability of detection given by
the PDF optimization method approximates closely to the
exact maximum value obtained from (P2). Therefore, the PDF
optimization scheme can be used as an efficient alternative
choice for conservative opportunistic spectrum sharing.

VI. CONCLUSION

We have developed two optimization schemes for coop-
erative spectrum sensing in cognitive radio networks. The
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Fig. 3. The probability of miss-detection (1 − Pd) vs. the probability of
false alarm (Pf ), with with M = 3, n = 50, and σ2

v = 2. The result is the
average of 100 simulations.

proposed schemes optimize the detection performance by
operating over a linear combination of local test statistics from
individual secondary users, which combats the destructive
channel effects between the target and the secondary nodes.
We conclude that the optimization of PDF would approximate
the maximum-Pd approach for a fixed probability of false
alarm. Some interesting extensions include studying finite-bit
communications over non-ideal wireless channels. One can
also consider fully distributed detection where each cognitive
radio device can work as a fusion center.
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