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Abstract—We study the steady-state probability distribution
of diffusion and consensus strategies that employ constant step-
sizes to enable continuous adaptation and learning. We show
that, in the small step-size regime, the estimation error at each
agent approaches a Gaussian distribution. More importantly, the
covariance matrix of this distribution is shown to coincide with
the error covariance matrix that would result from a centralized
stochastic-gradient strategy. The results hold regardless of the
connected topology and help clarify the convergence and learning
behavior of distributed strategies in an interesting way.

Index Terms—Diffusion strategy, consensus strategy, dis-
tributed stochastic optimization, central limit theorem, steady-
state performance

I. INTRODUCTION

In multi-agent systems, agents interact with each other to
solve a problem of common interest, such as an optimization
problem in a distributed manner. Two useful strategies that can
be used to guide the interactions of agents over a network are
consensus strategies [1]–[6] and diffusion strategies [7]–[11].

We assume the strategies employ constant step-sizes, as
opposed to decaying step-sizes, in order to enable continuous
learning and adaptation. Under this condition, earlier results
[10]–[12] derived closed-form expressions to characterize in
some detail the rate of convergence and the steady-state mean-
square-error (MSE) performance of the distributed strategies
over connected networks. The MSE expressions are useful
because they reveal the expected behavior of the learning
process over repeated experiments. In this work, we focus
instead on examining the behavior of a single realization of
the learning curve. This is an important objective because,
in practice, one usually runs a distributed strategy once and
would like to know what performance guarantees can be
expected with high probability under this scenario.

It was observed earlier in [13] that there is an interesting
interplay between the mean-square behavior of a stand-alone
adaptive agent and its almost-sure behavior. Investigating a
similar issue over networks is substantially more demanding
due to the coupling among the agents. We shall examine
single-realization behavior for networks by studying the prob-
ability that the steady-state solutions at the agents, {wk,i} as
i→∞, deviate away from the desired solution wo. One way
to bound this probability is to use the available MSE results
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and to invoke Chebyshev’s inequality to write for i � 1 and
for any ε > 0:

Pr {‖wk,i − wo‖ > ε} ≤ E‖wk,i − wo‖2

ε2
(1)

However, it is well-known that the Chebyshev inequality
generally leads to a loose bound. We therefore pursue a more
direct approach. Specifically, if we are able to characterize the
limiting probability distribution of wk,i directly, then we can
evaluate the above deviation probability more precisely. To this
end, we will show in this paper that the limiting distribution
approaches a zero mean Gaussian random distribution with a
covariance matrix that is identical to the one that is obtained
under a centralized stochastic-gradient strategy. It is a useful
conclusion that the distributed solution is able to recover the
same error covariance matrix as the centralized solution.

Analysis of the limiting probability distribution of the error
quantity for iterative algorithms can be traced back to the
pioneering works [14], [15], where the authors used the
moment method and the characteristic function method to
derive the asymptotic probability distribution of the single-
agent Robbins-Monro and Kiefer-Wolfowitz algorithms under
diminishing step-size rules. Reference [16] provides a useful
review of these algorithms and their analysis. The results
in [14], [15] show that the distribution is asymptotically
Gaussian. The same conclusion has been extended to dis-
tributed consensus estimation in [3], [4] also for the case of
diminishing step-sizes.

Studies on the asymptotic distribution of the error quantities
under constant step-size adaptation are largely unavailable
in the literature. While [17] argued that the error vector in
stand-alone LMS adaptation converges in distribution, the
resulting distribution was not characterized. This question
was addressed in [18], which derived an expression for the
characteristic function of the limiting distribution and showed
that it was not generally Gaussian. Reference [18] further
showed that the limiting distribution can be approximated by a
Gaussian for sufficiently small step-sizes. Therefore, the main
challenge that arises in the constant step-size case, for both
stand-alone agents and networked agents, is that the error
quantities are generally not exactly Gaussian in steady-state.
Moreover, the generalized central limit theorem developed in
[14]–[16] cannot be applied directly to the constant step-size
regime. Accordingly, although we are inspired by the useful
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results of [14]–[16], we nevertheless need to pursue a modified
approach to study the steady-state probability distribution of
distributed adaptation strategies under constant step-sizes.

II. DISTRIBUTED STOCHASTIC OPTIMIZATION

We consider a connected network of N agents that are
linked together through a topology. Each agent k implements a
distributed algorithm of the following form to update its state
vector from wk,i−1 to wk,i [10]–[12]:

φk,i−1 =
N∑
l=1

a1,lkwl,i−1 (2)

ψk,i =
N∑
l=1

a0,lkφl,i−1 − µkŝk,i(φk,i−1) (3)

wk,i =
N∑
l=1

a2,lkψl,i (4)

where wk,i ∈ RM is the state of agent k at time i, usually
an estimate for the solution of some optimization problem,
φk,i−1 ∈ RM and ψk,i ∈ RM are intermediate variables
generated at node k before updating to wk,i, µk is a non-
negative constant step-size parameter used by node k, and
ŝk,i(·) is an M × 1 update vector function at node k. The
combination coefficients a1,lk, a0,lk, and a2,lk in (2)–(4) are
nonnegative weights that each node k assigns to the infor-
mation arriving from node l. Let A1, A0 and A2 denote the
matrices that collect {a1,lk}, {a0,lk} and {a2,lk}, respectively;
these matrices are required to satisfy:

1TA1 = 1T , 1TA0 = 1T , 1TA2 = 1T (5)
a1,lk ≥ 0, a0,lk ≥ 0, a2,lk ≥ 0 (6)
a1,lk = a2,lk = a0,lk = 0, if l /∈ Nk (7)

Observe from (7) that the combination coefficients are zero
if l /∈ Nk, where Nk denotes the set of neighbors of node
k. Different choices of the combination policies will lead to
different versions of distributed algorithms, such as the adapt-
then-combine (ATC) strategy, combine-then-adapt (CTA) strat-
egy, and consensus strategy — see [7] for an overview.

We argued in [12] that each estimate wk,i generated by
(2)–(4) converges in the mean-square-error sense to the vector
wo that corresponds to the unique solution of the following
algebraic equation:

N∑
k=1

pksk(w) = 0 (8)

where sk(w) denotes the expected value of ŝk,i(w) defined by
(12) further ahead, pk is the kth entry of the following vector:

p , col{π1β1, . . . , πNβN} (9)

πk is the kth entry of the vector π , A2θ, θ is the right
eigenvector of the matrix A = A1A0A2 that corresponds to
the eigenvalue at one, βk , µk/µmax, and µmax , maxµk.
Furthermore, we also argued in [12] that the asymptotic

covariance matrix of the error vector w̃k,i , wo − wk,i is
µmax ·Π0, where the matrix Π0 is the solution to the following
Lyapunov equation:

HcΠ0 + Π0H
T
c = (pT ⊗ IM )Rv(wo)(p⊗ IM ) (10)

where Rv(wo) is the covariance matrix of ŝi(wo) and

Hc ,
N∑
k=1

pk∇wT sk(wo) (11)

Moreover, when µk ≡ µ for all agents, the above error
covariance matrix of the distributed strategy coincides with
the asymptotic error covariance matrix that results from a
centralized stochastic-gradient implementation using step-size
µ′ = µ/N [12].

III. MODELING ASSUMPTIONS

In this section, we list the assumptions that are needed
to establish the main result (Theorem 1); these conditions
are of the same nature (and generally relaxations) of similar
conditions often used in the analysis of the convergence
behavior of distributed strategies in the literature (see, e.g.,
[3], [4], [11], [12], [19], [20]). For explanations on why these
assumptions are justified and how they relate to assumptions
used in prior studies in the literature, the readers are referred
to [10]–[12].

Assumption 1 (Strongly connected network): The N × N
matrix product A , A1A0A2 is assumed to be a primitive
left-stochastic matrix, i.e., AT1 = 1 and there exists a finite
integer jo such that all entries of Ajo are strictly positive.

Assumption 2 (Update vector: Randomness): There exists
an M × 1 deterministic vector function sk(w) such that for
all w ∈ Fi−1:

E {ŝk,i(w)|Fi−1} = sk(w) (12)

for all i, k, where Fi−1 denotes the past history of iterates
{wk,j} for j ≤ i−1 and all k. Furthermore, there exist α ≥ 0
and σ2

v ≥ 0 such that for all i, k and w ∈ Fi−1:

E
{
‖ŝk,i(w)−sk(w)‖2

}
≤ α·E‖sk(w)‖2+σ2

v (13)

Assumption 3 (Update vector: Lipschitz): There exists a
nonnegative λU such that for all x, y ∈ RM and all k:

‖sk(x)− sk(y)‖ ≤ λU · ‖x− y‖ (14)

Assumption 4 (Update vector: Strong monotonicity): Let
pk denote the kth entry of the vector p defined in (9). There
exists λL > 0 such that for all x, y ∈ RM :

(x− y)T ·
N∑
k=1

pk

[
sk(x)− sk(y)

]
≥ λL · ‖x− y‖2 (15)
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Assumption 5 (Jacobian matrix: Lipschitz): Assume each
sk(w) is differentiable with respect to w and satisfies:

‖∇wsk(x)−∇wsk(y)‖ ≤ λH · ‖x− y‖, ∀ x, y (16)

Assumption 6 (Steady-state distribution): Let vi(w) denote
the MN × 1 global vector that collects the statistical fluctua-
tions (gradient noise) accross all agents:

vi(w) , col{ŝ1,i(w)− s1(w), . . . ŝN,i(w)− sN (w)} (17)

For any w ∈ Fi−1, we introduce the covariance matrix:

Rv,i(w) , E
{
vi(w)vTi (w)

∣∣Fi−1

}
(18)

We assume that, in the limit, the second-order moment be-
comes invariant and tends to

Rv , lim
i→∞

Rv,i(wo) (19)

where wo denotes the limit point specified by (8).
The above assumptions are sufficient to characterize rather

fully the convergence rate and the mean-square-error perfor-
mance of the distributed strategies (2)–(4) in the constant
step-size regime [12]. Next, we introduce two additional
assumptions that will allow us to characterize the steady-
state probability distribution of the error vectors. Similar
assumptions were also assumed in [16, p. 147] and [15] for
the study of the asympotic probability distribution of stand-
alone stochastic approximation algorithms with diminishing
step-sizes.

Assumption 7 (Noise covariance matrix: Lipschitz):
The noise covariance matrix Rv,i(w) satisfies a Lipschitz
condition, i.e., there exists a λv ≥ 0 such that

‖Rv,i(x)−Rv,i(y)‖ ≤ λv · ‖x− y‖ (20)

for any x, y ∈ RMN and all i ≥ 0.
Assumption 8 (Regularity of gradient noise): The gradient

noise process vi(w) satisfies:

lim
τ→∞

lim sup
i→∞

E
[
‖vi(w)‖2 · Ivi(τ)

]
= 0 (21)

where Ix(τ) denotes the indicator function:

Ix(τ) = 1 if ‖x‖ > τ, Ix(τ) = 0 if ‖x‖ ≤ τ (22)

Assumption 7 requires the covariance matrix of the gradient
noise to be smooth and Assumption 8 is a condition on the
tail distribution of the gradient noise. Specifically, it requires
that, in steady-state, the tail of the probability distribution of
the gradient noise decays at a sufficiently fast speed.

IV. SUMMARY OF MAIN RESULT

Let wi = col{w1,i, . . . ,wN,i} collect the iterates across
the network at time i and introduce w̃i , 1 ⊗ wo − wi to
represent the network error vector. Theorem 1 and Eq. (33)
further ahead will establish that, for sufficiently small step-
sizes, the steady-state normalized error vector, w̃i/

√
µmax, is

close to the following Gaussian distribution:

w̃i√
µmax

∼ N (0, 11T ⊗Π0), i� 1 (23)

where Π0 is the solution to the Lyapunov equation (10). It
then follows that the asymptotic estimator wi is approximately
distributed according to

wi ∼ N (1⊗ wo, µmax · 11T ⊗Π0), i� 1 (24)

Likewise, the asymptotic marginal distribution for the steady-
state iterates at each agent k will be given by

wk,i ∼ N (wo, µmax ·Π0), i� 1 (25)

The above results imply that the estimate at each agent
fluctuates around the optimal solution wo according to a
Gaussian distribution, where the covariance matrix is the same
value as that of a centralized stochastic-gradient strategy. The
result holds regardless of the specific topology of the network.

In practice, we are often interested in the probability that the
iterate at each agent deviates from the optimal solution wo by
a certain distance. A direct consequence of the results derived
in this paper is that we can now evaluate such deviations by
relying on the above distributions and their mean and variance
parameters. For example, for a given precision level ε > 0 and
a positive semi-definite weighting matrix Σ, we have

Pr {‖wk,i − wo‖Σ > ε} = Pr
{
‖w̃k,i‖2Σ > ε2

}
≈
∫
‖x‖2Σ≥ε2

pw̃(x)dx (26)

where pw̃ denotes the asymptotic Gaussian distribution of the
iterates {w̃k,i} according to (25). Calculations of the form
(26) are useful in many contexts. For example, they can
be used to determine the decision thresholds in distributed
detection problems [21]. The distribution of wk,i enables the
computation of the decision thresholds as a function of the
false alarm rate in closed-form.

V. ARGUMENTS AND ANALYSIS

Due to space limitations, we are only able to highlight the
main steps in the argument; proofs are omitted for brevity.
To begin with, we know from (10) and [12] that the mean-
square-error E‖w̃i‖2 is on the order of O(µmax), which will
be small for small µmax. We therefore examine the probability
distribution of the normalized error vector w̃i/

√
µmax as i→

∞. We pursue this task in two steps:
• First, we show that w̃i/

√
µmax is close to w̌s,i/

√
µmax

in high probability, where w̌s,i is defined by (27) below.
We also argue that the cumulative distribution functions
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(CDFs) of these two random vectors are close to each
other.

• Then, we show that the distribution of w̌s,i/
√
µmax is

close to a zero mean Gaussian random vector with the
covariance matrix being Π0. This is proved by showing
that the characteristic functions of these two distributions
are close to each other.

Lemma 1 (Close in probability): Let w̌s,i denote the fol-
lowing M × 1 vector

w̌s,i = µmax

i−1∑
n=0

Bnc (pT ⊗ IM )vi−n (27)

where

Bc , I − µmaxHc (28)

vi , vi(φi) (29)

φi , col{φ1,i, . . .φN,i} (30)

Then, for any ε > 0, it holds that

lim sup
i→∞

Pr
{∥∥∥∥ w̃i√

µmax
− 1⊗ w̌s,i√

µmax

∥∥∥∥ > ε

}
≤ O

(√
µmax

ε

)
+O

(µmax

ε2

)
(31)

Proof: Omitted for brevity.
An important observation that follows from the above

lemma is that, if a random variable x is close to another ran-
dom variable y in high probability, as indicated by (31), then
their probability distributions are close to each other as well.
This is analogous to the fact that “convergence in probability
implies convergence in distribution”. This statement can be
made rigorous but the argument is omitted.

Next, we call upon the following lemma to show that
the distribution of w̌s,i/

√
µmax can be arbitrarily close to a

Gaussian as i→∞.
Lemma 2 (Asymptotic Gaussian distribution): Suppose g

is a zero mean Gaussian random vector with covariance
matrix Π0. Then, for any given ν, we have

lim
µmax→0

lim sup
i→∞

∣∣∣∣F1⊗ w̌s,i√
µmax

(ν)− F1⊗g(ν)
∣∣∣∣ = 0 (32)

where the notation Fx(ν) denotes the cumulative distribution
of the random variable x, i.e., Pr(x � ν).

Proof: Omitted for brevity.
Lemmas 1 and 2 can be combined to establish the main
theorem.

Theorem 1 (Asymptotic probability distribution): Let g be
the same Gaussian random vector defined in Lemma 2. Then
the CDF of the normalized error vector w̃i/

√
µmax satisfies

lim
µmax→0

lim sup
i→∞

∣∣∣∣F w̃i√
µmax

(ν)− F1⊗g(ν)
∣∣∣∣ = 0 (33)

Proof: Omitted for brevity.
In the above theorem, it is important to note that both i→∞
and µmax → 0. If we do not have sufficiently small step-
sizes, then the asymptotic distribution of w̃i/

√
µmax is not

necessarily Gaussian. For example, in the case of a stand-alone
agent running the LMS recursion, it was shown in [18, Eq.
(23)] that the asymptotic characteristic function of w̃i/

√
µmax

has a form that is different than that of a Gaussian distribution!
However, when the µmax becomes small, the characteristic
function derived in [18] was shown to approach that of a
Gaussian distribution.
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