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Abstract-In many fields, and especially in the medical and social 

sciences and in various recommender systems, data are often gathered 
through clinical studies or targeted surveys. Participants are generally 
reluctant to respond to all questions in a survey or they may lack 
information to respond adequately to the questions. The data collected 
from these studies tend to lead to linear regression models where the 
regression vectors are only known partially: some of their entries are 
either missing completely or replaced randomly by noisy values. There 

are also situations where it is not known beforehand which entries are 
missing or censored. There have been many useful studies in the literature 
on techniques to perform estimation and inference with missing data. In 
this work, we examine how a connected network of agents, with each 
one of them subjected to a stream of data with incomplete regression 
information, can cooperate with each other through local interactions 
to estimate the underlying model parameters in the presence of missing 

data. We explain how to modify traditional distributed strategies through 
regularization in order to eliminate the bias introduced by the incomplete 
model. We also examine the stability and performance of the resulting 
diffusion strategy and provide simulations in support of the findings. We 

consider two applications: one dealing with a mental health survey and 
the other dealing with a household consumption survey. 

I. INTRODUCTION 

In data gathering procedures, it is common that some components 
of the data are missing or left unobserved. For example, in a clinical 
study, a participant may be reluctant to answer some questions. 
Likewise, in a recommender system using content based filtering [1], 
a participant may prefer to leave some questions unanswered. The 
phenomenon of missing data is ubiquitous in many fields including 
the social sciences, medical sciences, econometrics, and machine 
learning [2]-[5]. There are generally two methods to deal with the 
estimation problem in the presence of missing data: imputation and 
deletion [6]. If the positions of the missing data are known, then they 
can either be replaced by some values (deterministic or random) or 
the corresponding data can be removed from the dataset altogether. 
Removing data generally leads to performance degradation while data 
imputation results in bias estimates [2], [6], [7]. 

In this work, we examine how a connected network of agents, 
with each one of them subjected to a stream of data with incomplete 
regression information, can cooperate with each other to estimate 
the underlying model parameters in the presence of missing data. 
We explain how to adjust the traditional diffusion strategies through 
(de)regularization in order to eliminate the bias introduced by im­
putation. We consider two applications: one dealing with a mental 
health survey and the other dealing with a household consumption 
survey. 

Notation. We use lowercase letters to denote vectors, uppercase 
letters for matrices, plain letters for deterministic variables, boldface 
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letters for random variables. We use 0 and 161 for the Hadamard 
and Kronecker products, respectively. Moreover, diag{ Xl, . . .  , XN} 
denotes a diagonal matrix with diagonal elements Xl, . . .  , X N. We 
use col {a, b} to represent a column vector with entries a and b, 
while IM denotes the M x M identity matrix. 

II. PROBLEM STATEMENT 

Consider a connected network with N agents. Each agent senses 
a stream of wide-sense stationary data {dk (i), Uk,i} that satisfy the 
linear regression model: 

(1) 

where k is the node index and i is the time index. Moreover, the row 
vector Uk,i denotes a zero mean random process with covariance 
matrix Ru,k = EUk,iUk,i > 0, while vk(i) is a zero mean white 
noise process with variance (T;,k' The vector W

O E )RM is the 
unknown parameter that the network is interested in estimating. 

Assumption 1: We assume that the regression and noise processes 
are each spatially independent and temporally white. In addition, we 
assume that Ut,i and Vk(j) are independent of each other for all 
R., i, k, and j. • 

In this study, we examine the situation in which some entries in 
the regression vectors may be missing at random due to a variety of 
reasons, including incomplete information or censoring. We denote 
the incomplete regressor by Uk,i and express it in the form: 

(2) 

where Fk,i = diag{fL, ... , f�J consists of random indicator 
variables, fL E {O, I}. Each variable fL is equal to one with 
some probability p and equal to zero with probability 1- p. The value 
of p represents the likelihood that the j- th entry of the regression 
vector Uk,i is missing at time i. In that case, the missing entry is 
assumed to be replaced by an entry from the zero mean perturbation 
variable ek i' 

Assumption 2: We assume that the random variables Uk,i, fti ' 

and ek,i are independent of each other. We also assume that the ran­
dom process ek i is temporally white and spatially independent with 
covariance matrix Eek,iek,i = (TUM . • 

From model (1), the minimum mean-square-error (MSE) estimate 
of the unknown vector WO based on the data collected at node k is 
given by [8]: 

(3) 

where rdu,k £ Eddi)Uk,i' It is easy to verify from (1) that 
wI: = W

O so that the MSE solution allows node k to recover the 
unknown WO if the actual moments {Ru,k, r du,d happen to be 
known. The resulting mean-square-error is 

(4) 
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Now, we investigate the MSE estimate that would result based 
on the censored regressor, Uk,i' We first introduce the following 
matrices, which will be used in the analysis: 

(2p - p2):n.M:n.1- (p - p2)IM 
p2:n.M:n.1 + (p - p2)IM 
pIM 

(5) 

(6) 

(7) 

where :n.M is the M-column vector with all its entries equal to one. 
The censored estimate is given by 

with the covariance matrix Ru,k given by 

Ru,k £ Ru,k + Rr,k 

where we are introducing 

Rr,k £ -Pi 0 Ru,k + perlIM. 

Moreover, the cross correlation vector rdu,k is given by 

rdu,k £ EdkUk,i = (1 - p)rdu,k. 

(8) 

(9) 

(10) 

(11) 

We assume the matrix (IM + R;;,�Rr,k) is invertible. We can then 
relate wi; from (8) to wi; from (3) as follows: 

(12) 

where 
Qk £ R;;,�Rr,k(IM + R;;,�Rr,k)-l. 

It is observed from (12) that the new estimate is biased relative to 
woo 

III. ADAPTIVE DISTRIBUTED STRATEGY 

To mitigate the bias, we associate the following individual cost 
with each agent k: 

(13) 

where Tk is a symmetric matrix to be chosen. The minimizer of (13) 
is seen to be 

(14) 

Therefore, if we select 

Tk = pRu,k - H 0 Ru,k + perUM (15) 

then wi; = wi; (i. e. , the (de)regularised estimate from (14) would 
coincide with the unbiased estimate from (3». The corresponding 
mean-square-error for this choice of Tk is given by 

Jk,min £ er�,k - (1- p)2rdu,k(Ru,k - Tk)-lrdu,k 
= Jk,min + prdu,kR;;,�rdu,k > Jk,min. (16) 

For the remainder of the paper, we introduce a simplifying assump­
tion. 

Assumption 3: The covariance matrix Ru,k is diagonal, which is 
satisfied if the entries of the regression vector Uk,i are uncorrelated 
with each other. • 
Under Assumption 3, it can be verified that 

-pRu,k +perlIM 
(1 - p)Ru,k + perUM 
perlIM. 

(17) 

(18) 

(19) 

We first assume that p and erl are known. Later, we estimate erl from 
the data, assuming an estimate for p is available. 

To develop a distributed algorithm, we let Nk denote the set of 
neighbors of agent k. The network then seeks to solve: 

N 
minimize L Jk(w). 

wEIRM k=i 
(20) 

Following arguments similar to [9], [10], we can motivate the 
following Adapt-then-Combine (ATC) diffusion strategy: 

¢k,i = (1 + /-Lkperl)wk,i-i + /-Lkuk,ddk(i) - Uk,iWk,i-i] 
Wk,i = L aCk¢C,i (21) 

CENk 

where /-Lk is a small step size and the convex combination coefficients 
{ack} satisfy 

L aCk = 1, aCk = 0 for £ � Nk. 
CENk 

IV. PERFORMANCE ANALYSIS 

(22) 

A. Error Dynamics 

We associate with each agent the error vector 
- b. ° Wk,i = W - Wk,i (23) 

and collect the errors from across the network into the block vector: 

Wi £ cOl{Wi,i,'" ,WN,i}. (24) 

Then, it can be verified that Wi evolves according to the following 
dynamics: 

where 

Wi =AT[INM - M(Ri - perUNM)]Wi-i - AT MSi 
- AT M('R.e,i + perUN M )w� (25) 

(26) 

Ri £ diag{ U�,iUi,i' U;,iU2,i, ... , U�,iUN,i} (27) 
'R.e,i £ diag {{Uk,i(Uk,i - ek,i)Fk,;}k=l, .. ,N} (28) 
M £ diag{/-LdM, /-L2IM, ... , /-LN IN} (29) 

Si £ col{ U�,iVi (i), ... , U�,iVN( i)} (30) 

where the matrix A is left-stochastic, i. e. ,  AT:n.M :n.M, with its 
(£, k) entry equal to aCk. From the above definitions, we get 

ESi 0 (31) 

S 1;" Esis; = diag{er;,lRu,l, ... , er;,NRu,N} (32) 

R 1;" ERi = diag{ Ru,i, ... , Ru,N } 
(1 - p)diag{Ru,l, ... , Ru,N} + perUNM (33) 

E'R.e,i -perlINM. (34) 

B. Mean Stability Analysis 

Since the variables Uk,i and ek,i are temporally white and spatially 
independent, then the error vectors WC,j are independent of Uk,i and 

ek,i for all j if k f=. £ and for k = £ if j ::; i - 1. Therefore, taking 
the expectation of both sides of (25), we get 

EWi = AT [INM - M(R - perUNM )]EWi-i. (35) 

The recursion in (35) is stable if the step sizes are chosen to satisfy 

2 
o < /-Lk < ..,.,----,--,----;=----:-

(1- P)Amax(Ru,k) 
(36) 

where Amax{-) denotes the maximum eigenvalue of its matrix argu­
ment. It is seen that the estimator is asymptotically unbiased, i. e. ,  
limi-t= EWi = O. 
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C. Mean Variance Analysis 

We rewrite (25) more compactly as 

where 

13i £ AT [INM - M(Ri - pcrlINM)] 
Vi £ AT M('Re,i + pcrlINM) 
9 £ AT M. 

(37) 

(38) 

(39) 

(40) 

The mean-square error analysis relies on evaluating a weighted vari­
ance of the error vector. Let � denote an arbitrary nonnegative definite 
matrix that we are free to choose. Considering limi-+co EWi = 0, 
ESi = 0, and the independence between Wi and Si, from (37) we 
get 

lim Ellwill� = lim [E(w;_113;�13iwi-I) +E(S;gT�gSi) 
�---+oo 'l,-HX> 

+ E(w�*V;�ViW�)J (41) 

from which we can write 

in terms of the following quantities: 

F £ A®A- A® (R - pcrlINMf MAT 
- (R - pcrlINM f MA ® A + O(M2) (43) 

Z £ -p2crtAT Mw�w�* MA + AT ME('Re,iW�W�*'R:,i)MA 
(44) 

(45) 

The shorthand notation cr in (42) represents the weighting matrix 
� and is given by cr = vec(�), where the vec operator vectorizes 
a matrix by placing its columns on top of each other. Following 
arguments similar to [9], the diffusion algorithm in (25) can be 
verified to be stable in the mean-square-error if the matrix F is stable, 
which can be satisfied for sufficiently small step-sizes. 

We can then evaluate the network and individual MSDs as 
N 

MSDnetwork £ lim 
N
1 � Ellwk,iI12 = lim Ellwill� 

1----+ ex> L..,.; 1--+ ex> N k=1 
1 T T T -1 

= N[vec(Z +Y)] (I-F) vec(INM) (46) 

MSDk £ lim Ellwk,il12 = lim Ellwillik 1,-+00 1,-+00 
= [vec(ZT + yT)f (I -F) -1vec(Lk) (47) 

where Lk £ diag{O, . . .  , 0, 1M, 0, . . .  , O}, with the identity matrix 
appearing in the k- th block location. 

D. Estimation of Regularization Parameter 

In the sequel, we suggest one way to estimate the (de)regularization 
coefficient crl from the data. For a small probability of missing p, 
we have P2 � pI M. Moreover, note that 

Jk,min £ cr�,k = Eldk(i) - Uk,iWol2 
= Eldk(i) - Uk,iWol2 - pllwoll�" k - pcrlllwol12. (48) 

After a sufficient number of iterations, the estimate Wk,i in (21) will 
get close to wO. We replace the optimal WO by Wk,i and get 

Jk,min = cr�,k � Elek(i)12 - pllwk,ill�",k - pcrlllwk,il12 (49) 

where ek(i) £ dk(i) - Uk,iWk,i' It is still not possible to estimate 
pcr� directly from (49). We need to assume that either the variance of 

the original regressor or the probability of missing is known. Suppose 
that an estimate for p is available, say, fj. From (18), we can write 

1 fj 2 R k � --R- k - --creIM. u, 
1 _ fj u, 

1 _ fj , (50) 

Substituting Ru,k in (49) by the right-hand side of (50), we can 
estimate the variance cr� at node k as follows: 

,
2 

( a ) (1- fj)Elek(i)12 - fjllwk,illk." k cr�,k� fj(1-2fj)llwk,iI12 
. (51) 

where in (a) we assumed that the noise variance cr�,k is sufficiently 
small compared to other terms. Since Elek(i)12 and the diagonal 
matrix Ru,k are unknown, we estimate them by means of the 
following smoothing filters from data realizations: 

Ru,k(i) = (1 - cn)Ru,k(i - 1) + Ct1 (Uk,iUk,i) 81M (52) 

h(i) = (1 - Ct2)fk(i - 1) + Ct2Iek(i)12 (53) 

. 
(1 - fj)h(i) - fjllwk,i11k"

.
k(i) 

g(�) = 
fj(l-2fj)llwk,iI12 

(54) 

a-l,k(i) = (1 - Ct3)a-l,k(i - 1) + Ct3g(i) (55) 

where 0 < Cti « 1, for i = 1,2, 3 .  To prevent large fluctuations in 
estimating a-�,k(i), we used a smoothing filter for updating a-tk(i) 
in (52). 

V. SIMULATION RESULTS 

In this section, two applications are considered. In the simulations, 
we consider the connected network of 7 agents shown in Fig. 1 and 
employ the uniform combination rule ae,k = l/INkl. 

A. Household Consumption 

Household consumption depends on a number of parameters such 
as income, wealth, family size, and retirement status [2]. We consider 
the following log-form model for household consumption [2]: 

In ce( i) = Ct + (In le,i)(31 + (In mL)(32 + (In me,i)(33 + te,i(34 
+Ee(i) 

where ce(i) is the consumption of household C at time i, le,i is total 
wealth, which is assumed to be censored, mL is the permanent part 
of income, me,i is the current income, te,i refers to the retirement 
status and family size. The modeling error Ee(i) is assumed to be zero 
mean. Similar to [2], we only consider the first 4 components of the 
regressor, i. e. , (34 = O. If we subtract the mean of the measurement 
from both sides, we arrive at the model 

dC(i) = Ue,iWe + Ee(i) (56) 

where 

de(i) £ Ince(i) - E (In ce(i)) 
Ue,i £ [Inle,i In m�,i In me,i] - E [Inle,i In m�,i In me,i]' 

For the complete data, the unknown parameters can be estimated 
via a least-squares procedure to yield We = [0. 054 0.182 0. 24f. 
We generate data according to We and assume that the regressor 
Ue,i has Gaussian distribution. We model Ee(i) by a zero mean 
Gaussian random variable. We further assume that the log of wealth is 
randomly missed and we consider a uniform distribution over [-1, 1] 
for the missing variable, thus cr� = 2/ 3 .  In the survey, it has been 
observed that approximately 30% of total wealth, including housing 
and stock market, are censored [2]. We use Ct1 = Ct2 = Ct3 = 0. 01. 
In the simulation, we use /-Lk = 0. 01. Fig. 2 shows the bias and 
the MSD of the estimator (52) for p = 0. 3 at node 1. The results 
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Fig. I. The topology of the network. 
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Fig. 2. Estimating the variance of missing noise, (J�, from the data at node 

1. (a) The bia� of the estimate and (b) the MSD (in dB) of the estimate. 

show that the algorithm is able to estimate the variance (J� after a 
number of iterations. Next, we compare the performance of different 
algorithms. The results are shown in Fig. 3 for the modified diffusion 
(21) (MATC), the regular diffusion (ATC) [9], and for noncooperative 
(ncoop) behavior. 

B. Mental Health Survey 

We consider the following model, motivated by a mental health 
survey study run by various companies [11], [12]: 

dk(i) =Xk,i() +Vk(i), i =1,2, . . .  , N, (57) 

where dk (i) is the square root of total depression score for every 
individual i, Xk,i E ]R6 denotes the regressor (covariate) for ev­
ery individual i, and vk(i) is the modeling error. Index k refers 
to the company index and i is used for participant's index. The 
elements of Xk,i are defined in [11] and include variables such 
as income, age, and martial status. We apply the least squares 
technique to a subset of the data in [11] to find the estimate of 
{j = [0. 6352 - 0. 023 0 0. 0163 0.1993 1. 4157 - 0. 2367 0. 2419f. 
Then, we generate simulated depression scores according to (j and 
randomly realized regressors. Note that we generate (uniformly) zero 
mean random regressors Xk,i' We further assume that the income 

_ ncoop 
_MATC 
- - -ATC 

Fig. 3. The MSD of different algorithms. 

�OOL--�--�--���rooo�����--�� Iteration 

Fig. 4. MSD for modified ATC and noncooperative approach for different 
missing probabilities. 

is missed with probability p in the simulation study. We consider 
a zero mean Gaussian distribution with standard deviation 0. 05 for 
missing parts. The variance of measurement noise vk(i), i. e. , cr�,ko 
is set to 0. 05. In the simulation, we use J.tk = 0. 008. The MSDs are 
obtained by averaging over 40 experiments. In Fig. 4, we compare 
the performance of MATC diffusion and non-cooperative (ncoop) for 
different missing probabilities. 

VI. CONCLUSIONS 

In this paper, we have examined the estimation of an unknown 
vector over a connected network of agents, with each agent subjected 
to a stream of data with incomplete regressors. We have shown 
that the estimator in general is biased; hence, we have modified 
the cost function by a (de)regularisation term to mitigate the bias 
and obtained a distributed approach based on diffusion adaptation 
techniques. We have studied the mean-stability and performance 
of the proposed algorithm. We have also suggested a technique to 
estimate the (de)regularisation term from the data. We have evaluated 
the proposed algorithm for two applications in mental health and 
household consumption surveys. 
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